
Neighborhood-aware address translation for
irregular GPU applications

Seunghee Shin∗1, Michael LeBeane†, Yan Solihin‡, Arkaprava Basu§

∗Binghamton University, †Advanced Micro Devices, Inc., ‡North Carolina State University, §Indian Institute of Science
sshin@binghamton.edu, Michael.Lebeane@amd.com, solihin@ncsu.edu, arkapravab@iisc.ac.in

Abstract—Recent studies on commercial hardware demon-
strated that irregular GPU workloads could bottleneck on
virtual-to-physical address translations. GPU’s single-instruction-
multiple-thread (SIMT) execution generates many concurrent
memory accesses, all of which require address translation before
accesses can complete. Unfortunately, many of these address
translation requests often miss in the TLB, generating many
concurrent page table walks. In this work, we investigate how to
reduce address translation overheads for such applications.

We observe that many of these concurrent page walk requests,
while irregular from the perspective of a single GPU wavefront,
still fall on neighboring virtual pages. The address mappings
for these neighboring pages are often stored in the same 64-
byte cache line. Since cache lines are the smallest granularity of
memory access, the page table walker implicitly reads address
mappings (page table entries or PTEs) of many neighboring
pages during the page walk of a single virtual address (VA).
However, in conventional hardware, mappings not associated
with the original request are simply discarded. In this work, we
propose mechanisms to coalesce the address translation needs
of all pending page table walks in the same neighborhood that
happen to have their address mappings fall on the same cache
line. This is almost free; the page table walker (PTW) already
reads a full cache line containing address mappings of all pages
in the neighborhood. We find this simple scheme can reduce the
number of accesses to the in-memory page table by around 37%,
on average. This speeds up irregular GPU applications by an
average of 1.7×.

Index Terms—Computer architecture; GPU; virtual address.

I. INTRODUCTION

GPUs have emerged as a first-class computing platform.
The massive data parallelism of GPUs was first leveraged by
highly-structured parallel tasks such as matrix multiplications.
However, GPUs have more recently found uses across a broader
range of application domains such as deep learning, graph
analytics, data analytics, computer-aided-design, oil and gas
exploration, medical imaging, and computational finance [1].
Memory accesses from many of these emerging applications
demonstrate a larger degree of irregularity – accesses are less
structured and are often data dependent. Consequently, they
show low spatial locality [2], [3], [4].

A recent study on real hardware demonstrated that such
irregular memory accesses could slow down irregular GPU
workloads by up to 4× due to address translation overheads
alone [5]. Our evaluation on a simulator corroborates their

1This work was performed during the author’s internship at AMD Research.

finding. That study found that the negative impact of access
irregularity could be greater on the address translation than on
the data access itself. Compared to one memory access on a
cache miss, a miss in the TLB 1 triggers a page table walk
that could take up to four sequential memory accesses in the
prevalent x86-64 or ARM architectures. Typically, a hardware
page table walker (PTW) walks (accesses) the in-memory page
table to find the desired translation.

To match a GPU’s need for large memory bandwidth,
hardware designers often provision multiple independent PTWs.
However, TLB misses from irregular GPU workloads, and
their corresponding page table walk requests, often happen in
bursts. Consequently, they add significant queuing delay in the
critical path of execution. A cache access cannot begin until
the corresponding address translation completes, since modern
GPUs tend to employ physically-tagged caches.

In this work, we aim to reduce the address translation
overhead of such irregular GPU workloads. Our work relies on
two key observations. First, many concurrent page table walks
request address translations for virtual pages belonging to the
same neighborhood. We define a set of page walk requests to
be concurrent if they are pending or being serviced during the
same or overlapping period of execution. We define a set of
virtual page addresses to be part of the same neighborhood if
their address mappings (i.e., corresponding page table entries
or PTEs) are contained in the same cache line. For example,
each PTE in an x86-64 system is 8-bytes long [6]. Therefore,
a typical 64-byte long cache line contains PTEs of eight
neighboring virtual page addresses.

Second, like any other memory access, a PTW accesses
memory at the granularity of a cache line (e.g., 64 bytes) while
walking the in-memory page table [7]. However, it makes use
of only the 8-byte PTE needed for translating the requested
virtual page address. Instead, we propose to service all pending
page walk requests for any virtual page addresses in the same
neighborhood (i.e., whose PTEs are contained in the same
cache line) at the same time. This makes better use of other
PTEs in the same cache line anyway brought in by the walker.
Consequently, it obviates later memory accesses to the same
cache line that would have otherwise happened when those
page walk requests for virtual pages on the same neighborhood

1The Translation Lookaside Buffer, or TLB, is a cache of address translation
entries. A hit in the TLB is fast, but a miss triggers a long-latency page table
walk to locate the desired translation from an in-memory page table.

are serviced. Ultimately, the reduction in the number of memory
accesses to the in-memory page table speeds up performance
by reducing page walk latency.

We extended the page walking mechanism to exploit the
observations mentioned above. Specifically, whenever a PTW
receives a 64-byte cache line containing a requested PTE, it
also scans pending (concurrent) page walk requests to addresses
in the same neighborhood (i.e., whose PTEs also fall in the
just-brought cache line). All these page walk requests are
then serviced immediately disregarding the order in which
they may have arrived at the PTW. Effectively, this technique
coalesces accesses to the in-memory page table for page walk
requests outstanding at the same time and for pages in the
same neighborhood.

We then took this mechanism a step further by observing that
in a typical hierarchical page table organization (e.g., 4-level
for x86) accesses to the upper levels (non-leaf) of a page table
could similarly benefit from opportunistic coalescing for the
entries in the same neighborhood. For example, an x86-64 page
table is structured as a four-level radix tree. While the final
translation is stored in the leaf level, the upper levels of the tree
are traversed by the hardware page table walker to reach the
correct leaf node. More importantly, like the leaf level, several
entries of the upper levels of a page table are packed in a
single cache line. In x86-64, the size of each entry in the upper
level of the page table is also 8-byte long. Thus, eight such
upper-level page table entries are stored in a single 64-byte
cache line. Consequently, while accessing the upper levels of
a page table, the eight entries that form a neighborhood are
brought together by the walker. We leverage this to reduce
memory accesses to the upper-levels of the page table as well.

Our empirical evaluation finds that such neighborhood-aware
servicing of page walk requests could reduce the number
of memory accesses performed by page table walkers by
around 40%, on average. Our evaluation also demonstrates
that coalescing of accesses to both leaf level and the upper-
levels of the page table are almost equally important. Our
proposed enhancement speeds up irregular GPU workloads by
1.7× on average, and by up to 2.3× in the best case.

II. GPU VIRTUAL MEMORY SUBSYSTEM AND IMPACT OF
IRREGULAR APPLICATIONS

In this section, we first briefly discuss the baseline GPU
architecture and its virtual memory subsystem. We then
quantitatively discuss the impact of irregularity in memory
access patterns on a GPU’s address translation mechanism.

A. Execution Hierarchy in a GPU

GPUs are designed for massive data-parallel processing
that operates on hundreds to thousands of data elements
concurrently. GPU’s hardware resources are typically organized
in a hierarchy to effectively manage the massive concurrency.

The top part of Figure 1 depicts the architecture of a typical
GPU. Compute Units (CUs) are the basic computational blocks
of a GPU, and there are typically 8 to 64 CUs in a GPU. Each
CU includes multiple Single-Instruction-Multiple-Data (SIMD)

 GPU

TLBTLBTLBTLB

 CPU

IOMMU
Shared Cache

Memory Controller

Memory

CUCUCUCU

TLB

PTWs
TLBTLBTLBTLB

Shared TLB

Core 1
Cache

PTWTLB
Core 0
Cache

PTWTLB

Buffer

CUCUCUCU

 GPU

SIMD
reg

SIMD
reg

SIMD
reg

SIMD
reg

L1 Cache

Scratchpad
Global

Data Store

L2 Cache

CU

Fig. 1: Baseline Heterogeneous System Architecture.

units, each of which has multiple lanes of execution (e.g., 16).
GPU threads are scheduled to SIMD engines in a bundle called
a wavefront (or warp), which is typically composed of 32 or
64 threads. These wavefronts execute the same instruction with
different data on a SIMD engine. A Single-Instruction-Multiple-
Thread (SIMT) model is mapped to the SIMD engines by using
execution masks in the case where GPU threads in the same
wavefront follow different execution paths.

A GPU’s memory resources are also arranged in a hierarchy.
Each CU has a private L1 data cache and a scratchpad that are
shared across the SIMD units within the CU. When several
data elements accessed by a SIMD instruction reside in the
same cache line, a hardware coalescer combines these requests
into a single cache access to gain efficiency. Finally, a large
L2 cache is shared across all CUs in a GPU.

B. Shared Virtual Memory in GPUs

GPUs have adopted several key programmability-enhancing
features as they mature to become first-class compute units. One
such feature is the shared virtual memory (SVM) across the
CPU and the GPU [8], [9]. For example, full compliance with
industry promoted standards like the Heterogeneous System
Architecture (HSA) requires GPUs to support SVM [9].

There are typically two ways to enable shared virtual memory
in modern commercial GPUs – 1 shared page table between
CPU and GPU via the IO Memory Management Unit (IOMMU)
hardware (detailed next), and 2 selective mirroring of parts
of page tables of CPU and GPU by an OS driver. In this work,
we focus on the former without loss of generality.

...
PPN: 011
PPN: 012

PPN: NULL
...

...
PPN: 130
PPN: 034
PPN: 412

...

...
PPN: 042
PPN: 045
PPN: 048

...

...
PPN: 057
PPN: 058
PPN: 218

...

...
PPN: 091
PPN: 078
PPN: 082

...

L4

L4 Index
0F5

L3 Index
0A3

L2 Index
029

L1 Index
089

Page Offset
0C1

Pointer to root of page table
(PPN: 100)

0F4
0F5
0F6

L3 L2
L1

0A2
0A3
0A4

028
029
02A

089
08A
08B

VA0

L1

00A
00B
00C

VA1 0F5 0A3 029 08A 008
VA2 0F5 0A3 02A 00B 020

...

...

...

L1

L1

...

L2

L2
...

L3
In-memory page table

Virtual page number

Virtual addresses to be translated

Fig. 2: Example page walks of three different virtual page addresses (colored red, green and blue).

The bottom part of Figure 1 depicts the key hardware
components of SVM in a commercial GPU. Conceptually,
the key enabler for SVM is the GPU’s ability to walk the same
x86-64 page table as the CPU via the IOMMU hardware [10],
[11], [5]. By sharing the same page table, a process running
on a GPU can observe the same virtual-to-physical address
mapping as a process running on a CPU and consequently,
share the same virtual memory.

Address translation using an IOMMU: Figure 2 illustrates
how a hardware page table walker in an IOMMU translates
three different virtual addresses (colored red, green, blue) by
walking an in-memory page table. An x86-64 based processor’s
page table is structured as a 512-ary radix tree with four levels,
and thus, requires four memory accesses to complete a page
walk. As shown in the bottom part of the figure, each virtual
address is broken into a virtual page number and a page offset.
A virtual page number is translated to a physical page frame
number by walking the page table, which is then concatenated
with the page offset to generate the desired physical address.

A page walk starts by looking up the 4KB page containing
the root node of a page table (also called level L4). A root node
has 512 pointers 2 to nodes at next level of the tree (referred
to as the L3 level). The top nine bits of a 48-bit wide virtual
address (bits 47 to 39), known as the L4 index, are used to
index into the root node to find the pointer to the appropriate
L3 node. An L3 node also contains 512 pointers to nodes in
the next level (referred to as the L2 level). The next nine bits
of the VA (bits 38-30), known as the L3 index, are used to
index into the L3 node to reach an appropriate node in the
L2 level. Similarly, bits 29 to 21, known as the L2 index,

2A pointer can be NULL if the corresponding virtual address range is
unmapped.

are used to index into an L2 node to reach a node in the leaf
level (referred to as the L1 level). An L1 node contains 512
physical page frame numbers, each corresponding to a 4KB
virtual address page. Bits 20 to 12 of the VA, known as the L1
index, are used to index into an L1 node to find the desired
physical page frame number. Henceforth, we will refer levels
L4 to L2 as upper levels of the page table.

From the example, we observe that the page walk of the first
two virtual addresses (VA0 and VA1) shares the same entries
for all upper levels of the page table (thus shaded in both red
and green). Similarly, the third virtual address (VA2) shares
the entries in the first two upper levels of the page table with
the other two. This observation is exploited by hardware page
walk caches (PWCs)[5], [12], [13]. PWCs store recently-used
entries from the upper-levels of a page table. Hits in PWCs
reduce the number memory accesses needed for a walk by up
to three memory accesses depending upon which upper level
(L4, L3 or L2) produces the hit. For example, a hit for the
entire upper level (L4, L3 and L2) will need just one memory
request to complete the walk by accessing only the leaf node
(L1). In contrast, a hit for only the root level requires three
memory accesses. In the worst case, a complete miss in the
PWCs requires four memory accesses to complete a page walk.

An IOMMU typically houses multiple independent page
table walkers (e.g., 8-16) to concurrently service several page
table walk requests [5]. Multiple walkers are important since
GPUs demand high memory bandwidth and, consequently,
often send many concurrent walk requests. The IOMMU
itself has two levels of TLBs to cache recently used address
translations, but they are relatively small and designed to
primarily serve devices that do not have their own TLBs (e.g.,
a Network Interface Controller). Page walk requests typically

queue up in IOMMU’s page walk request buffer (a.k.a, IOMMU
buffer) before triggering the walk. When a walker becomes
free (e.g., after it finishes servicing a walk), it starts servicing a
new request from the IOMMU buffer in the order of its arrival.

GPU TLB Hierarchy: GPUs typically have a sophisticated
TLB hierarchy to reduce the number of page walks. A
TLB caches recently-used address translation entries to avoid
accessing in-memory page tables on every memory access.
When multiple data elements accessed by a SIMD instruction
reside on the same page, only a single virtual-to-physical
address translation is needed. A hardware coalescer exploits
this locality to look up the TLB hierarchy only once for such
same-page accesses. Each CU has a private L1 TLB. Misses in
the L1 TLB looks up a larger L2 TLB that is shared across all
the CUs in the GPU (bottom portion of Figure 1). A translation
request that misses in both levels is forwarded to the IOMMU.

Putting it Together: Life of a GPU Address Translation
Request: 1 An address translation request is generated when
executing a SIMD memory instruction (load/store). 2 A
coalescer merges multiple requests to the same page (e.g.,
4KB) generated by the same SIMD memory instruction. 3
The coalesced request looks up the GPU’s L1 TLB and then the
GPU’s shared L2 TLB (if it misses in the L1 TLB). 4 On a
miss in the GPU’s L2 TLB, the request is sent to the IOMMU.
5 At the IOMMU the request first looks up the IOMMU’s

TLBs. 6 On a miss, the request queues up as a page walk
request in the IOMMU buffer. 7 When an IOMMU’s page
table walker becomes free, it selects a pending request from
the IOMMU buffer in first-come-first-serve order. 8 The page
table walker first performs a PWC lookup and then completes
the walk of the page table, generating one to four memory
accesses. 9 On finishing a walk, the desired translation is
returned to the IOMMU and the GPU TLBs.

0

0.5

1

1.5

2

2.5

3

3.5

MVT ATX NW BIC GEV

Sp
e

e
d

u
p

 o
ve

r
b

as
e

lin
e

Fig. 3: Speed up possible with ideal address translation.

C. Address translation overheads of irregular applications

Irregular GPU workloads make data-dependent memory ac-
cesses with little spatial locality [2], [3]. Many pointer-chasing
algorithms like graph manipulation show such irregularity in
its memory access patterns.

Irregular memory accesses cause memory access divergence
in a GPU’s execution model. Although different work-items

64B
8B

x86-64 page table entry

Physical Address PWU
P
W
T

P
C
D

ADLGN
E

0912526364

VA index
Page table node

...

P: present
W: writable
U: user accessible
PWT: write transparent
PCD: cache disabled
A: accessed
D: dirty
L: 4MB page
G: global
NE: no execute

Fig. 4: x86-64 page table node.
within a wavefront execute the same instruction, they access
data from distinct pages. This renders the hardware coalescer
ineffective, and consequently, many concurrent TLB accesses
are generated by execution of a single SIMD load/store
instruction. Furthermore, many of these requests often miss
in the TLB owing to low locality of irregular applications.
Eventually, these address translation requests queue up in the
IOMMU buffer to be serviced by the page table walkers. The
significant queuing latency at the page table walkers ultimately
slows down workloads.

A recent study on commercial GPU hardware demonstrated
that such divergent accesses could slow down irregular GPU
workloads by up to 3.7 − 4× due to address translation
overheads [5]. Our simulation results (detailed in Section V)
corroborated these findings. Figure 3 shows the speedup
achievable for five representative workloads on a system with
ideal address translation over a typical baseline GPU with
SVM. A system with an ideal address translation mechanism
is an unrealistic system where all translation happens in a
single cycle. Thus, the height of each bar in the figure shows
performance lost due to address translation overheads. From
the figure we observe that various irregular GPU workloads
slowed down by 3− 4× due to address translation overheads
even when using a small memory footprint of a few MBs.

In this work, we aim to reduce address translation overheads
for such irregular GPU workloads.

III. THE CASE FOR NEIGHBORHOOD-AWARE ADDRESS
TRANSLATION

We utilize the observation that multiple entries of a page
table are contained within a single cache line. Each page table
entry in a x86-64 page table is 8-byte long, therefore, a typical
64-byte cache line contains eight PTEs (Figure 4). These eight
PTEs map eight contiguous 4KB virtual memory pages. We
define such 32KB aligned virtual memory regions whose PTEs
are contained in the same cache line as a neighborhood of the
leaf level of a page table (L1 level). While we focus on x86-
64’s page tables, other architecture such as ARM, also have a
near-identical page table format, and thus, the observation is
widely applicable.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MVT ATX NW BIC GEV Mean

Fr
ac

ti
o

n
 o

f
ac

ce
ss

e
s

to

L1
 le

ve
l i

n
 t

h
e

 s
am

e

n
e

ig
h

b
o

rh
o

o
d

Fig. 5: Fraction of concurrent page walk requests that falls in
the same leaf level (L1) neighborhood.

We then observe that page table walkers access memory
at the granularity of a cache line, as in a CPU. Each time
a walker reads an entry in the page table as part of a page
walk it does so by bringing the entire cache line containing the
PTEs for the entire neighborhood. However, only the desired
PTE is typically used by a page table walker for calculating
the physical address, and the rest of cache line is discarded.

We, however, find that many concurrent page table walks
generated by execution of irregular GPU applications fall within
the same neighborhood. For example, in Figure 2 the PTEs in
the leaf level (L1) of the page table PPN:057 and PPN:058,
for virtual addresses VA0 and VA1, respectively, fall in the
same cache line. Therefore, address VA0 and VA1 are in same
neighborhood of virtual address space with respect to the leaf
level of the page table.

We found that concurrent access to the page table for
addresses in the same neighborhood is not uncommon. The
reason is that CUs concurrently execute independent work-
groups, but they often run similar regions of code during the
same period of execution. Consequently, the data accesses
and corresponding page walk requests often fall in the same
neighborhood in the virtual address space.

A smarter page table walker could exploit the neighborhood
information to reduce the number of memory accesses to a page
table. Access to PTEs of all concurrent page walk requests that
fall in the same neighborhood can be serviced together through
request coalescing. This coalescing could avoid later accesses
to same cache line when servicing a different page walk request
to another virtual page address in the same neighborhood.

We empirically measure the potential savings in the number
of memory accesses by coalescing page walks that fall into
the same neighborhood. Figure 5 shows the fraction of all
memory accesses to leaf levels (L1) of the page table that are
for the virtual address pages in the same neighborhood, and
are concurrent (i.e., pending or being serviced at the page table
walker during the same period of execution). We observe that
this fraction is around 0.4, on average, with the only major
outlier being MVT. This particular application has a nearly
random memory access pattern, and thus only a small number
of concurrent page walk requests fall in the same neighborhood
of virtual memory.

0

0.2

0.4

0.6

0.8

1

MVT ATX NW BIC GEV Mean

Fr
ac

ti
o

n
 o

f
ac

ce
ss

e
s

to

u
p

p
e

r
le

ve
ls

 in
 t

h
e

sa

m
e

 n
e

ig
h

b
o

rh
o

o
d

Fig. 6: Fraction of concurrent page walk requests that falls in
same neighborhood of the upper-levels of the page table.

We then observe that multiple upper-level page table entries
(level L4-L2) are also contained within a single cache line. In
fact, all upper-level page table entries in x86-64 are also 8-
bytes long. Therefore, a typical 64-byte cache line also contains
eight upper-level page table entries. For example, in Figure 2
the entry for an L2 level of the page table for the virtual
address VA2 falls in the same cache line as virtual addresses
VA0 and VA1. However, note that a neighborhood for the L2
level entries covers 16MB of aligned virtual address region.
This is because each entry in the L2 level of the page table
corresponds to 2MB of virtual address region and eight such
entries are contained in a cache line. Similarly, neighborhood
for the L3 and L4 levels of a page table are 8GB and 4TB
aligned virtual address regions, respectively.

Figure 6 shows the fraction of memory accesses to the upper
levels of the page table that falls in the same neighborhood
of their respective levels and are from concurrent page walks.
We exclude any walk that uses exact same upper-level page
walk entries as that is typically well captured by page walk
caches (PWCs). This measurement thus captures the potential
of reducing memory accesses to the upper levels of the page
table by exploiting neighborhood knowledge.

Summary: 1 We observe that typically eight page table
entries are contained in same cache line. 2 We observe that
the page table walkers access in-memory page tables at the
granularity of a cache line. 3 We empirically find that many
concurrent page table walk requests have their page table entries
contained in the same cache line (a.k.a., in same neighborhood).
4 These observations can be leveraged by an enhanced page

table walker to significantly reduce the number of walks it
needs to perform to service a given set of page walk requests.

IV. DESIGN AND IMPLEMENTATION OF
NEIGHBORHOOD-AWARE PAGE TABLE WALKING

Our goal is to design a page walk mechanism that oppor-
tunistically coalesces memory accesses to the page table for
page walk requests that fall in the same neighborhood in the
virtual address space. In Section V-B, we will demonstrate that
such coalescing can significantly reduce the total number of
memory accesses performed by page table walker(s).

IOMMU

PTW Service TableIOMMU Buffer

 GPU

TLBTLBTLBTLB

 CPU

IOMMU
Shared Cache

Memory Controller

CUCUCUCU

TLB

PTWs
TLBTLBTLBTLB

Shared TLB

Core 1
Cache

PTWTLB
Core 0
Cache

PTWTLB

Buffer

CUCUCUCU

... ...
PA PLVirtual Address

PTW3
PTW2
PTW1
PTW0

PLVirtual Address

Req5
Req4
Req3
Req2
Req1
Req0

PTW0 PTW1 PTW2 PTW3

... ...
CL

Fig. 7: Enhanced IOMMU design that performs neighborhood
aware coalescing of accesses to the page table. New hardware
is colored green (shaded).

We modify the IOMMU hardware that houses the page table
walkers in two important ways to achieve aforementioned goals
1 Whenever a page table walker completes a memory access

to one of the levels of a page table, it searches the pending walk
requests in the IOMMU buffer for coalescing opportunities.
2 Page walk requests are selected to start their walk only if

it presents no coalescing opportunity with any on-going page
walks.

A. Additional IOMMU hardware state

Figure 7 shows how we propose to extend the IOMMU
design with additional hardware state. We first extended each
entry of the IOMMU buffer 3 with three new fields. The field
PL contains the level of the page table up to which the given
walk request has coalesced with another page table access. The
value of this field could be anything between L4-L1 or NULL.
The second new field, called PA, holds the physical address of
the page table node in the next level (identified by the value in
field PL) of the walk. This field is populated when the given
page walk request gets coalesced for upper-level accesses to the
page table. Both these fields are NULL if a given walk request
has not coalesced. Finally, a one-bit flag (CL) notes if the
corresponding walk request is being considered for coalescing
with an on-going access to the page table. This information is
used in deciding which page walk request to be serviced by a
free page table walker (explained later in the Section).

We then added a small new structure called the Page Walk
Service Table (PWST). It has one entry for each independent
page table walker in the IOMMU (eight in our experiments).

3As described in Section II, the IOMMU buffer is used to hold page walk
requests that are yet to start their walk.

Each entry in the PWST contains the virtual page address of the
page walk request currently being serviced by the corresponding
walker and the level of the page table which is currently
being accessed. This information is utilized to determine the
opportunity for coalescing. In total, we add only around 1.5KB
of additional state in these two structures.

B. Operation for coalescing accesses to the page table

We now describe how we opportunistically coalesce accesses
to the page table by leveraging neighborhood information at
every level of a page table walk. Whenever a memory access
to a page table completes, the coalescing logic in the IOMMU
first looks up the corresponding entry in the PWST structure
to find out the virtual page address of the current walk and
the page table level that was accessed. If the just-completed
memory access was to a leaf level (L1) then the entire walk
has completed, and the translated physical page frame number
is returned to the TLB as is in the baseline. The coalescing
logic then scans the IOMMU buffer for any pending page
walk request whose virtual page address falls in the same
neighborhood (i.e., in the same 32KB aligned VA region) of
the virtual address of the just-completed walk. The desired
physical page frame address for any such matching walk request
is already available in the 64-byte cache line brought by the
walker and thus, immediately returned.

If the just-completed memory access was to the L2, L3 or
L4 level (upper-level) of the page table then the neighborhood
is 16MB, 8GB or 4TB aligned virtual memory regions,
respectively (explained in Section III). Similar to before, the
coalescing logic scans the IOMMU buffer for any page walk
request in the same neighborhood of the just-completed page
table access. For any such matching request, the physical page
frame number for the next level of the page table is available in
the 64-byte cache line brought by the walker. The field PA in
the corresponding entry in the IOMMU buffer is then updated
with this address. The field PL is also updated to contain the
corresponding level of the page table. Values of these fields
are used to complete walk requests whose accesses to only
upper-levels of the page table are coalesced (i.e., a partially
coalesced walk).

We then modify the logic of selecting which of the pending
page walk requests to be serviced next by a page table walker.
Typically, the IOMMU selects requests in first-come-first-serve
order from its buffer. Our coalescing logic, however, slightly
modifies this to avoid servicing a walk request that could be
coalesced with an on-going page table access by another page
table walker. Specifically, a pending page walk request in the
IOMMU buffer is not selected to start its walk if the entry
has its coalescing bit (CL bit) set. The coalescing bit indicates
that an on-going page table access could be used to service
the page walk request entirely or partially. Otherwise, all valid
PWST entries are scanned to compute the neighborhood of
each on-going page table access using their respective virtual
page address and the level of the page table being accessed.
If an entry in the IOMMU buffer has a virtual page address
that falls within any of these neighborhoods, the CL bit of the

VA

0A0

0A3

VA

0F0

0F5

0F7

IOMMU

PTWS

IOMMU Buffer

PTW0: FREE

PA PL

0F5 0A3 029 089
0F5 0A3 029 08A
0F5 0A3 02A 00B

Virtual Address

PTW1
PLVirtual Address

Req0
Req1
Req2

PTW1: FREE

PTW0

...

10
...
12
...
17
...

L4

...
PA

128
...
34

...

L3

...
PA

42

48
...
89
...

L2

...
VA PA

028

02A

02F

1

...
2290A7

45

2 3 4 L1(48)
VA PA

008

00F

98
57

...
161
...

L1(45)

...
VA PA

088
089

08F

5808A

3
42

48
...
89
...

L2

...
VA PA

028

02A

02F

45029
141
...

...
211
...

...

78

4

(a) Baseline IOMMU buffer state (b) PTW0 starts to service Req0

(c) PTW0 walks through L4-L2 pagetables (d) PTW0 completes pagetable walk

00B
029

-
-
-

...
-
-
-

...
0
0
0

...
CL

IOMMU

PTWS

IOMMU Buffer

PTW0: BUSY

PA PL

- - - -
0F5 0A3 029 08A
0F5 0A3 02A 00B

Virtual Address

PTW1
PLVirtual Address

Req0
Req1
Req2

PTW1: FREE

PTW0 L40F5 0A3 029 089

...
-
-
-

...
L4
L4
-

...
1
1
0

...
CL

3

1

2

4

IOMMU

PTWS

IOMMU Buffer

PTW0: BUSY

PA PL

- - - -
0F5 0A3 029 08A
0F5 0A3 02A 00B

Virtual Address

PTW1
PLVirtual Address

Req0
Req1
Req2

PTW1: FREE

PTW0 L20F5 0A3 029 089

...
48
45
-

...
L2
L2
-

...
0
1
0

...
CL

SCAN

5

IOMMU

PTWS

IOMMU Buffer

PTW0: BUSY

PA PL

- - - -
0F5 0A3 029 08A

- - - -

Virtual Address

PTW1 L2
PLVirtual Address

Req0
Req1
Req2

0F5 0A3 02A 00B

PTW1: BUSY

PTW0 L10F5 0A3 029 089

...
-

58
-

...
-

L1
-

...
0
0
0

...
CL

1

2

5

Fig. 8: Example of coalescing page table accesses. The example virtual addresses are the same as in Figure 2.

corresponding entry is set and not immediately considered to
be serviced by a page table walker. If both of these conditions
are false then a request from the buffer is selected on first-
come-first-serve basis.

The page walk then starts by looking up the PA and PL fields

in the IOMMU buffer entry of the selected request. If both
these fields are unset then the walk starts from the root of the
page table. Otherwise, the walk request is partially coalesced
with previous walks. The walker then needs to finish the walk
by starting from the level indicate in the PL field. The physical

address of the node in the page table that is to be accessed next
is found in the PA field. Finally, the corresponding PWST entry
is populated with the information of the walk request. The
IOMMU buffer entry of the chosen walk request is deleted.

C. Example operation

Figure 8 shows a running example of how page table accesses
are coalesced based on neighborhood information. Figure 8(a)
shows the initial state with three page walk requests waiting
to be serviced in the IOMMU buffer. These addresses are the
same three virtual addresses (VA0, VA1 and VA2) whose page
walk was depicted in Figure 2 of Section II. While Figure 2
depicts how different page walks often access entries in the
same cache line (i.e., neighborhood), here we will demonstrate
how this is leveraged to coalesce page table accesses in our
enhanced IOMMU design. For ease of explanation, we assume
there are two independent page table walkers in the IOMMU.

Figure 8(b) shows that the page walk request for Req0
(virtual address 0x0F5|0x0A3|0x029|0x089) is serviced
at page table walker 0 (PTW0). Although the page table walker
PTW1) is free, Req1 and Req2 do not start their walk. Instead,
the coalescing logic notes the opportunity to coalesce walks
of these requests with on-going walk for Req0 in the fields
PL and CL of the corresponding IOMMU buffer entries.

Figure 8(c) shows the status of the IOMMU when PTW0
finishes page table accesses up to the level L2. The buffer
entries corresponding to Req1 and Req2 are updated to
contain the physical page address of the corresponding L1
nodes in their respective page walk. Note that the address of
the L1 node in the walk for Req2’s access was found in the
same cache line brought by PTW0 while walking the page
table for Req0. There is no more opportunity for Req2 to be
coalesced with the ongoing page walk, and thus, its CL bit is
unset. Removing the CL bit makes it eligible to be serviced
by the other page table walker (PTW1). However, Req1’s CL
bit remains set as it can be coalesced with Req0 till the leaf.

Figure 8(d) shows the state after PTW0 finishes the access to
the L1 (leaf) level of the page table. At this point, the address
translation for Req0 is complete. Req1 can also complete
its translation since its PTE falls in the same 64-byte cache
line brought in by PTW0 for Req0. The page walks of Req0
and Req1 are thus completely coalesced and no access to
in-memory page table is performed for Req1.

On the other hand, the page walk for Req2 could only be
coalesced till level L2 with Req0’s walk. Therefore, PTW1
finishes Req1’s page walk by accessing the L1 node.

V. EVALUATION

We describe evaluation methodology and analyze the results.

A. Methodology

We used the execution-driven gem5 simulator that models a
heterogeneous system with a CPU and an integrated GPU [14].
We extended the gem5 simulator to incorporate a detailed
address translation model for a GPU including coalescers,
the GPU’s TLB hierarchy, and the IOMMU. Inside the

TABLE I: The baseline system configuration.
GPU 2GHz, 8 CUs, 10 waves per SIMD-16,

4 SIMDs per CU, 64 threads per wave
L1 Data Cache 32KB, 16-way, 64B block
L2 Data Cache 4MB, 16-way, 64B block
L1 TLB 32 entries, Fully-associative
L2 TLB 512 entries, 16-way set associative
IOMMU 256 buffer entries, 8 page table walkers,

32/256 entries for IOMMU L1/L2 TLB,
FCFS scheduling of page walks

DRAM DDR3-1600 (800MHz), 2 channels,
16 banks per rank, 2 ranks per channel

TABLE II: GPU benchmarks for our study.
Benchmark
(Abbrev.)

Description Memory
Footprint

Ir
re

gu
la

r
ap

pl
ic

at
io

ns

MVT (MVT) Matrix Vector Product and Trans-
pose

128.14MB

ATAX (ATX) Matrix Transpose and vector multi-
plication

64.06MB

NW (NW) Optimization algorithm for 531.82MB
DNA sequence alignments

BICG (BIC) Sub Kernel of BiCGStab Linear
Solver

128.11MB

GESUMMV
(GEV)

Scalar, Vector and Matrix Multipli-
cation

128.06MB

R
eg

ul
ar

ap
pl

ic
at

io
n SSSP (SSP) Shortest path search algorithm 104.32MB

LUD (LUD) Lower upper decomposition 1.2MB
Color (CLR) Graph coloring algorithm 26.68MB
Back Prop.
(BCK)

Machine learning algorithm 108.03MB

Hotspot
(HOT)

Processor thermal simulation algo-
rithm

12.02MB

IOMMU module, we model a two-level TLB hierarchy, multiple
independent parallel page table walkers, and page walk caches
to closely mirror the real hardware. In addition, we implemented
our proposed logic and state for coalescing page table accesses
inside the IOMMU module.

The simulator runs unmodified applications written in
OpenCL [15] or in HC [16]. Table I lists the relevant parameters
for the GPU, the memory system, and the address translation
mechanism of the baseline system. Section V-C presents
sensitivity studies varying key parameters.

Table II lists the applications used in our study with
descriptions of each workload and their respective mem-
ory footprints. We draw applications from various bench-
mark suites including Polybench [17] (MVT, ATAX, BICG,
and GESUMMV), Rodinia [18] (NW, Back propagation,
LUD, and Hotspot), and Pannotia [19] (SSSP and Color).

In this work, we focus on emerging GPU applications
with irregular memory access patterns. These applications
demonstrate memory access divergence [2], [3] that bottlenecks
GPU’s address translation mechanism [5]. However, not every
application we studied demonstrates irregularity or suffers sig-
nificantly from address translation overheads. We find that five
workloads (MVT, ATX, NW, BIC, and GEV) demonstrate
irregular memory access behavior while the remaining (SSP,
LUD, CLR, BCK, and HOT) have fairly regular memory
accesses. Applications with regular memory accesses show little
translation overhead to start with and thus offer little scope for
improvement. Our evaluation therefore focuses on applications

Irregular Workloads Regular Workloads

0

0.5

1

1.5

2

2.5

3

3.5

MVT ATX NW BIC GEV Mean SSP CLR LUD BCK HOT Mean

Sp
e

e
d

u
p

 o
ve

r
b

as
e

lin
e

L1 Coalescing
Full Coalescing
Ideal

Fig. 9: Speedup with neighborhood-aware page table walk coalescing.

in the first category. However, we include results for the regular
applications to demonstrate that our proposed techniques do not
harm workloads that are insensitive to translation overheads.

B. Results and Analysis
In our evaluation, we quantitatively answer the following

questions: 1 how coalescing of accesses to the page table can
speed up applications? 2 what are the factor(s) behind the
speedup (or slowdown)? 3 how varying micro-architectural
parameters impact the speedup (or slowdown)?

Performance analysis Figure 9 shows the speedup with
neighborhood-aware coalescing of page table walks over the
baseline. We divided ten applications into two groups – irregular
and regular applications. Each application has three bars –
the first bar (L1 coalescing) shows the speedup if only
accesses to the L1 (leaf) level of the page table are coalesced.
The second bar shows the speedup if accesses to both the L1
and upper-levels (L2, L3, and L4) are coalesced (Full
coalescing). The third bar shows speedup achievable in an
ideal system where address translations takes one cycle.

We make several observations from the Figure 9. First, full
coalescing can speed up irregular applications by around 1.7×,
on average. Application GEV speeds up by a significant 2.3×.
Second, coalescing accesses to both leaf level and upper-levels
of the page table are almost equally important. While a few
applications benefit most from coalescing to leaf nodes (e.g.,
ATX, BIC) there are other applications (e.g.,NW, GEV) that
benefit significantly from coalescing of accesses to the upper-
level of the page table. However, the performance of most of
the irregular applications are far from that of ideal address
translation – indicating scope for further exploration on ways to
reduce translation overheads. Applications with regular memory
access patterns, however, do not suffer much overhead due
to address translation as these applications observe very little
speedup even with ideal address translation. However, our
proposed coalescing mechanism does not hurt the performance
of any of these applications. Therefore, we will focus only on
irregular applications for the remainder of the evaluation.

We then analyze sources of improvement contributing to
the speedup. Our neighborhood-aware coalescing of accesses
to the page table reduces the number of memory accesses
performed by the page table walkers. Figure 10 shows the

0

0.2

0.4

0.6

0.8

1

MVT ATX NW BIC GEV Mean

N
o

rm
al

iz
e

d
 a

cc
e

ss
e

s
to

in

-m
e

m
o

ry
 p

ag
e

 t
ab

le

L1 Coalescing Full Coalescing

Fig. 10: Normalized number of accesses to the page table.

0

0.2

0.4

0.6

0.8

1

1.2

MVT ATX NW BIC GEV Mean

N
o

rm
al

iz
e

d
 p

ag
e

 w
al

k
la

te
n

cy

L1 Coalescing Full Coalescing

Fig. 11: Normalized average page walk latency with coalescing.

normalized number of memory accesses to the page table after
coalescing (lower is better). Each irregular application has two
bars corresponding to coalescing of accesses to only the L1
level and to all levels of the page table. The normalization is
done over the memory accesses for page walks in the baseline.
We observe that coalescing can significantly reduce the number
of access to the in-memory page table – on average, full
coalescing leads to about 37% reduction in page table access.
We also observe that coalescing of accesses to both the leaf level
and upper-levels of page table are almost equally important.

Figure 11 shows the normalized value of average page
walk latencies for each application. This metric is a more
direct measurement of how each page walk can leverage
neighborhood information to reduce accesses to the page
table. Like the previous figure, there are two bars for each
application. We observe that page walk latency drops by close

0

0.5

1

1.5

2

2.5

MVT ATX NW BIC GEV Mean

Sp
e

e
d

u
p

4 walkers 8 walkers
16 walkers 32 walkers

Fig. 12: Speedup of with varying number of page table walkers.

to 38%. Correlating Figure 10 and Figure 11, we observe that
a decrease in the number of accesses to the page table does
not necessarily speed up individual page walks. This could
happen since there are multiple concurrent page table walkers
(eight in our baseline). The throughput of page walks could
increase due to better utilization of walkers due to coalescing
but without necessarily making each walk faster.
C. Sensitivity Analysis

In this section, we quantified the sensitivity of key architec-
tural parameters towards coalescing performance.

First, we varied the number of independent page table
walkers in the IOMMU. A larger number of walkers typically
increases the effective of address translation bandwidth, but
it could also increase congestion at the memory controller
due to a larger number of concurrent page walking. We show
the impact of changing the number of walkers from four to
thirty-two in Figure 12. Each application has four bars where
each bar represents speed up with full coalescing of page table
accesses with a given number of walkers. The height of each
bar is normalized to the baseline (no coalescing) for the given
number of walkers. For example, the bar for ATX with eight
page table walkers represents the speedup for ATX with full
coalescing over the baseline; both run with eight page walkers.

We observe that speedups remain significant even with a large
number of independent page table walkers (e.g., around 1.3× on
average even with 32 page table walkers). However, we observe
that typically the improvement due to coalescing decreases with
an increasing number of walkers. This is expected; a larger
number of independent walkers reduces address translation
overheads in the baseline by increasing the bandwidth of
translation. MVT is an exception to this trend, though. A deeper
investigation revealed an intriguing interaction between the
number of page table walkers, the TLB and the coalescing of
page table accesses. With the increasing number of independent
walkers, the rate of completion of page walks, and consequently,
the rate of allocation of new entries in the TLB goes up. This
can sometimes lead to thrashing in the TLB, as is the case with
MVT. This could allow more headroom to speed up application
performance as the number of independent walkers is increased.

Next, Figure 13 shows speedups with full coalescing of
accesses to page tables under different sizes of the IOMMU
buffer. A larger buffer size allows coalescing of accesses to the
page table across a larger number of page table walk requests.

0

0.5

1

1.5

2

2.5

3

MVT ATX NW BIC GEV Mean

Sp
e

e
d

u
p

 o
ve

r
b

as
e

lin
e

 w
it

h

e
ac

h
 IO

M
M

U
 b

u
ff

e
r

si
ze

Buffer size 128

Buffer size 256

Buffer size 512

Fig. 13: Speedup of with varying IOMMU buffer size

0

0.5

1

1.5

2

2.5

MVT ATX NW BIC GEV Mean

Sp
e

e
d

u
p

 o
ve

r
b

as
e

lin
e

2 KB 4 KB 16 KB Full Coal.

Fig. 14: Speedup comparison with cache for PTE.
Consequently, we consistently observe a larger speedup with
increasing buffer capacity.

Summary: 1 We find that opportunistic coalescing of
accesses to page table based on neighborhood analysis can
speed up irregular GPU applications by 1.7×, on average. 2
It is crucial to coalesce accesses to all levels of the page table.
3 Coalescing of page table accesses can reduce the number

of memory accesses performed by the page table walkers by
around 37%. 4 Our proposed coalescing mechanism continues
to perform well under varying micro-architecture configurations
like the number of page table walkers and buffer size.

VI. DISCUSSION

Coalescing vs. Cache for PTEs: An alternative to coalesc-
ing could be to add a data cache at the IOMMU that keeps
recently accessed cache lines containing PTEs. Like coalescing,
such a cache could avoid memory accesses for page walks
that falls in the same cache line available in the newly added
cache. Figure 14 shows the speedup achieved by such a cache
of varying size over the baseline. In the Figure, there are four
bars for each application, corresponding to different cache
sizes and our proposed full-page walk coalescing scheme. We
observe that coalescing provides significantly higher speedup
compared to the alternative design employing a data cache for
lines containing PTEs. Note that our coalescing proposal adds
only 1.5KB of additional state.

The key advantage of coalescing is that one hardware page
table walker (PTW) can service walks for multiple requests
(fully or partially). However, with caching, even if the required

PTE is available in the newly added IOMMU cache, a separate
PTW still needs perform that walk. Often the unavailability of
free PTWs leads to significant queuing delay in servicing walk
requests. Coalescing reduces this queuing delay by involving
fewer PTWs to perform a given number of walks, something
that a cache based design cannot achieve.

Area and Power: Overall, an additional 1.5KB CAM is
required for our solutions. In our analysis using FabScalar [20],
we find that the design requires 0.048mm2 of area, and it
consumes 0.041nj and 0.196nj of energy per read and write,
respectively. This is about 40− 200× less energy consumption
than DRAM read and write operations [21]. Overall, the
coalescing design saves dynamic energy since it replaces costly
accesses to DRAM-resident page tables with much cheaper
accesses to our CAM structure. Table III shows the energy
savings in page walks due to coalescing after accounting for
the additional energy consumed by our hardware. We found
that coalescing can reduce 103.51mW of power on average.

TABLE III: Saved Power.

Benchmark MVT ATX NW BIC GEV Mean
Power(mW) 27.69 36.86 358.19 24.81 70.00 103.51

VII. RELATED WORK

Efficient virtual-to-physical address translation for GPUs
is a critical design requirement. Lowe-Power et al. [22] and
Pichai et al. [23] were among the first to explore designs for a
GPU’s MMU. Lowe-power et al. demonstrated that a coalescer,
a shared L2 TLB, and multiple independent page walkers are
essential components of an efficient GPU MMU design. Their
design is similar to our baseline configuration. On the other
hand, Pichai et al. showed the importance of making wavefront
(warp) scheduler TLB-aware. Phichai et al. also observed that
multiple entries in the upper-level page table can reside in
a single cache line and exploited for better page table walk
scheduling. We however, opportunistically coalesce accesses
to any levels of the page table that fall in same neighborhood.

Vesely et al. demonstrated that a GPU’s translation latencies
are much longer than that of a CPU’s, and that GPU applica-
tions with memory access divergence may bottleneck due to
address translation overheads, on real hardware [5]. Cong et
al. proposed TLB hierarchy that is similar to our baseline but
additionally proposed to use a CPU’s page table walkers for
GPUs [24]. However, accessing CPU page table walkers from a
GPU may not be feasible in real hardware due to long latencies.
Lee et al. proposed a software managed virtual memory to
provide the illusion of large memory by partitioning GPU
programs to fit into physical memory space [25]. Ausavarung-
nirun et al. showed that address translation overheads could be
even larger in the presence of multiple concurrent applications
on a GPU [26]. They selectively bypassed TLBs to avoid
thrashing and prioritized address translation over data access
to reduce overheads. Yoon et al. proposed the use of a virtual
cache hierarchy in the GPU to defer address translation till a
miss in the entire GPU cache hierarchy [27]. This approach
could remove address translation from the critical path, but

makes it harder for executing GPU kernels from multiple
different process address spaces. Another recent work by Haria
et al. proposed to leverage identity mapping between virtual
and physical memory in accelerators to avoid overheads of
walking hierarchical page tables [28]. This approach, however,
requires re-defining the software-hardware interface for virtual-
to-physical address mapping.

Different from most of these works, we leverage the layout of
page tables and the fact that many concurrent page walks map
to neighboring entries in the page tables. Our approach does
not require any software or OS modification. It is orthogonal
to any technique that improves the efficacy of TLBs. Many of
these works are either already part of our baseline (e.g., [22])
or are mostly orthogonal to ours (e.g., [26]).

CPU’s virtual memory overheads and the techniques em-
ployed to reduce them are well studied. To exploit address
localities among threads, Bhattacharjee et al. proposed inter-
core cooperative TLB prefetchers [29]. Pham et al. proposed
to exploit naturally occurring contiguity to extend the effective
reach of TLBs by enabling a single TLB entry to map multiple
pages [7]. Bhattacharjee later proposed shared PWCs and
efficient page table designs to increase PWC hits [12]. Cox et
al. have proposed MIX TLBs that support different page sizes
in a single structure [30]. Barr et al. proposed SpecTLB that
speculatively predicts virtual-to-physical memory mappings to
hide the TLB miss latency. Several others proposed to leverage
segments to selectively bypass TLBs and avoid most TLB
misses [31], [32], [33]. While some of these techniques can
be extended to GPUs, most of them require OS or software
changes or are orthogonal to the neighborhood-aware address
translation we proposed in this work.

VIII. CONCLUSION

We make an important observation that during page table
walking a hardware page table walker reads the in-memory
page tables at the granularity of a cache line. A cache line
typically contains eight page table entries. Therefore, page
table entries for neighboring virtual page address are contained
in the same cache line. We leverage these two observations to
effectively coalesce accesses to the page table for concurrent
page walk requests. We then extend the same basic mechanism
to coalesce accesses to the upper levels of a hierarchical page
table by observing that multiple upper-level page table entries
are also brought together by a page table walker in a single
cache line. Taken together, our proposed enhancement speeds
up irregular GPU applications by 1.7× on average, and by up
to 2.3× in the best case.

ACKNOWLEDGMENT

AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. This research
was partially supported by the US Department of Energy under
the PathForward program. Any opinions, findings, conclusions
or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the Department of
Energy or other sponsors.

REFERENCES

[1] NVIDIA, “GPU-accelerated applications,” 2016, http://images.nvidia.
com/content/tesla/pdf/Apps-Catalog-March-2016.pdf.

[2] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasub-
ramonia, “Managing DRAM latency divergence in irregular GPGPU
applications,” in SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2014.

[3] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in Proceedings of the 2012 IEEE
International Symposium on Workload Characterization (IISWC), ser.
IISWC ’12. Washington, DC, USA: IEEE Computer Society, 2012.
[Online]. Available: http://dx.doi.org/10.1109/IISWC.2012.6402918

[4] J. Meng, D. Tarjan, and K. Skadron, “Dynamic warp subdivision for
integrated branch and memory divergence tolerance,” in Proceedings of
the 37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815992

[5] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee,
“Observations and opportunities in architecting shared virtual memory
for heterogeneous systems,” in 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), April 2016.

[6] Intel, “Intel 64 and IA-32 Architectures Software Developers Manual:
System Programming guide,” 2016, https://www.intel.in/content/www/
in/en/architecture-and-technology/64-ia-32-architectures-software-
developer-vol-3b-part-2-manual.html.

[7] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT: Coa-
lesced large-reach TLBs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2012.

[8] “Unified memory in CUDA 6,” https://devblogs.nvidia.com/parallelforall/
unified-memory-in-cuda-6/, accessed: 2017-11-19.

[9] G. Kyriazis, “Heterogeneous System Architecture: A Technical Review,”
in AMD Whitepaper, 2012.

[10] “IOMMU tutorial at ASPLOS 2016,” http://pages.cs.wisc.edu/
∼basu/isca iommu tutorial/IOMMU TUTORIAL ASPLOS 2016.pdf,
accessed: 2017-11-19.

[11] “IOMMU v2 specification,” https://developer.amd.com/wordpress/media/
2012/10/488821.pdf, accessed: 2017-11-19.

[12] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2540708.2540741

[13] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
Skip, don’t walk (the page table),” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1815961.1815970

[14] “The gem5 simulator,” http://gem5.org/, accessed: 2017-11-19.
[15] Khronos Group, “OpenCL,” 2014, https://www.khronos.org/opengl/.
[16] S. Chan, “A Brief Intro to the Heterogeneous Compute Compiler,” 2016,

https://gpuopen.com/a-brief-intro-to-boltzmann-hcc/.
[17] L.-N. Pouchet and T. Yuki, “Polybench,” 2010, http://web.cse.ohio-state.

edu/∼pouchet.2/software/polybench/.
[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,

and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009. [Online]. Available:
https://doi.org/10.1109/IISWC.2009.5306797

[19] S. Che, B. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular GPGPU graph applications,” in 2013 IEEE
International Symposium on Workload Characterization, IISWC 2013,
09 2013.

[20] N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh, J. Gandhi,
B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and E. Rotenberg,
“FabScalar: Composing synthesizable RTL designs of arbitrary cores
within a canonical superscalar template,” in Proceedings of the
38th Annual International Symposium on Computer Architecture, ser.
ISCA ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000067

[21] S. Volos, J. Picorel, B. Falsafi, and B. Grot, “BuMP: Bulk memory access
prediction and streaming,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec 2014.

[22] J. Lowe-Power, M. Hill, and D. Wood, “Supporting x86-64 address
translation for 100s of GPU lanes,” in Proceedings of International
Symposium on High-Performance Computer Architecture, ser. HPCA ’14,
02 2014.

[23] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support
for address translation on GPUs: Designing memory management
units for CPU/GPUs with unified address spaces,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2541940.2541942

[24] Y. Hao, Z. Fang, G. Reinman, and J. Cong, “Supporting address transla-
tion for accelerator-centric architectures,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2017.

[25] J. Lee, M. Samadi, and S. Mahlke, “VAST: The illusion of
a large memory space for GPUs,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, ser.
PACT ’14. New York, NY, USA: ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628075

[26] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi,
A. Jog, C. J. Rossbach, and O. Mutlu, “MASK: Redesigning the
GPU memory hierarchy to support multi-application concurrency,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18. New York, NY, USA: ACM, 2018. [Online].
Available: http://doi.acm.org/10.1145/3173162.3173169

[27] H. Yoon, J. Lowe-Power, and G. S. Sohi, “Filtering translation bandwidth
with virtual caching,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173195

[28] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory in
heterogeneous systems,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’18. New York, NY, USA: ACM,
2018. [Online]. Available: http://doi.acm.org/10.1145/3173162.3173194

[29] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB for
chip multiprocessors,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XV. New York, NY, USA: ACM,
2010. [Online]. Available: http://doi.acm.org/10.1145/1736020.1736060

[30] G. Cox and A. Bhattacharjee, “Efficient address translation for
architectures with multiple page sizes,” in Proceedings of the
Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS
’17. New York, NY, USA: ACM, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037704

[31] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485943

[32] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient
memory virtualization: Reducing dimensionality of nested page
walks,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-47. Washington,
DC, USA: IEEE Computer Society, 2014. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.37

[33] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2749469.2749471

http://images.nvidia.com/content/tesla/pdf/Apps-Catalog-March-2016.pdf
http://images.nvidia.com/content/tesla/pdf/Apps-Catalog-March-2016.pdf
http://dx.doi.org/10.1109/IISWC.2012.6402918
http://doi.acm.org/10.1145/1815961.1815992
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.html
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf
http://pages.cs.wisc.edu/~basu/isca_iommu_tutorial/IOMMU_TUTORIAL_ASPLOS_2016.pdf
https://developer.amd.com/wordpress/media/2012/10/488821.pdf
https://developer.amd.com/wordpress/media/2012/10/488821.pdf
http://doi.acm.org/10.1145/2540708.2540741
http://doi.acm.org/10.1145/1815961.1815970
http://gem5.org/
https://www.khronos.org/opengl/
https://gpuopen.com/a-brief-intro-to-boltzmann-hcc/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1109/IISWC.2009.5306797
http://doi.acm.org/10.1145/2000064.2000067
http://doi.acm.org/10.1145/2541940.2541942
http://doi.acm.org/10.1145/2628071.2628075
http://doi.acm.org/10.1145/3173162.3173169
http://doi.acm.org/10.1145/3173162.3173195
http://doi.acm.org/10.1145/3173162.3173194
http://doi.acm.org/10.1145/1736020.1736060
http://doi.acm.org/10.1145/3037697.3037704
http://doi.acm.org/10.1145/2485922.2485943
http://dx.doi.org/10.1109/MICRO.2014.37
http://doi.acm.org/10.1145/2749469.2749471

	Introduction
	GPU virtual memory subsystem and impact of irregular applications
	Execution Hierarchy in a GPU
	Shared Virtual Memory in GPUs
	Address translation overheads of irregular applications

	The case for neighborhood-aware address translation
	Design and implementation of neighborhood-aware page table walking
	Additional IOMMU hardware state
	Operation for coalescing accesses to the page table
	Example operation

	Evaluation
	Methodology
	Results and Analysis
	Sensitivity Analysis

	Discussion
	Related work
	Conclusion
	References

