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ABSTRACT
GPUs are widespread across clusters of compute nodes due to their
attractive performance for data parallel codes. However, commu-
nicating between GPUs across the cluster is cumbersome when
compared to CPU networking implementations. A number of recent
works have enabled GPUs to more naturally access the network,
but suffer from performance problems, require hidden CPU helper
threads, or restrict communications to kernel boundaries.

In this paper, we propose GPU Triggered Networking, a novel,
GPU-centric networking approach which leverages the best of
CPUs and GPUs. In this model, CPUs create and stage network
messages and GPUs trigger the network interface when data is
ready to send. GPU Triggered Networking decouples these two
operations, thereby removing the CPU from the critical path. We
illustrate how this approach can provide up to 25% speedup com-
pared to standard GPU networking across microbenchmarks, a
Jacobi stencil, an important MPI collective operation, and machine-
learning workloads.
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Figure 1: Study of kernel launch latencies on modern GPUs.
While there is significant variance depending on howmany
kernels are presented to the scheduler at once, even the best
case takes 3-4µs. These high latencies discourage the use of
kernel-boundary networking for fine-grained or frequent
communication.1

1 INTRODUCTION
With the impending end of Moore’s Law and Dennard scaling [9],
the computing industry has turned to accelerators to continue
pushing the performance and power trends of the last 25 years.
Chief among proposed accelerator architectures are GPUs, which
have already found a comfortable home in both datacenters and
high-performance computing (HPC) ecosystems. Over 70 of the
top 500 supercomputers [39] and many of the supercomputers on
the Green 500 list [38] utilize GPUs to maximize performance per
watt on data parallel workloads. Additionally, most major cloud
computing providers, such as Amazon EC2 [3], offer GPU-enabled
nodes as part of their service portfolio. GPUs are, and will continue
to be, an important part of many computing infrastructures.

Despite widespread deployment across clusters both large and
small, networks of GPUs are currently programmed in a cumber-
some coprocessor style. While many clusters employ peer-to-peer
capabilities for direct data movement between NICs and GPUs [25],
the control plane is routed through the host CPU. Such data move-
ment operations are only available through CPU runtime and driver
calls, which restricts communication to only occur on GPU kernel
boundaries [10, 25, 35].Wewill refer to this style of kernel-boundary
GPU networking as Host-Driven Networking (HDN), since the
host directs the networking operations at kernel boundaries.

The most recent iteration of HDN technology, GPUDirect Async
(GDS) [33], goes so far as to allow the GPU to initiate pre-registered
network messages by ringing a doorbell on the NIC. In the GDS

1Product names omitted to avoid direct cross-vendor comparisons.
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Figure 2: Allreduce algorithm on a cluster of GPUs orga-
nized as a simple ring. As the number of participating GPUs
increaseswith a fixed problem size, kernel launch overheads
between the communication and computation phases will
become more pronounced.

model, the CPU posts a network operation and interleaves net-
work initiation between kernel invocations inside of NVIDIA®
CUDATM [28] streams. The GPU front-end scheduler evaluates the
stream and rings a doorbell on the NIC when a kernel has com-
pleted. While this is certainly a step in the right direction, GDS still
restricts communication to kernel boundaries. On modern GPU
architectures, launching and tearing down a kernel context adds
significant latency, even when the scheduling logic is performed
locally on the GPU using its hardware scheduler.

Figure 1 explores these launch latencies on modern GPUs from
multiple vendors and different form factors. Our experiments quan-
tify the overheads associated with the GPUs’ hardware scheduling
logic when presented with a variable length sequence of empty
kernels. Depending on the size of the kernel stream presented to
the scheduler and the details of the target hardware, the launch
latencies can vary from 3µs-20µs. Even in the best case, the large
dispatch overheads discourage fine-grained or frequent messag-
ing using kernel boundary solutions, and require that the network
operation be large enough to amortize the cost of splitting a ker-
nel into pre-network and post-network pieces. The overheads also
negate the efforts of network interconnect providers, who have
successfully reduced wire latencies to less than 100ns per hop [20].

Kernel boundary networking is particularly problematic in strong
scaling scenarios, where the addition of more nodes decreases the
work per node and increases the number of ever smaller messages.
Consider the case of the simple Allreduce operation illustrated in
Figure 2, which is an important primitive in some distributed, GPU-
accelerated machine learning [1] applications. In Allreduce, each
GPU needs a piecewise combination of the vector present on every
other GPU. Data gets copied from one node to the next node dur-
ing the communication step which is followed by a user-specified
binary operation in the computation step. At the end, every node
has the final result of the reduction. As more GPUs are added to
the collective operation with a fixed size input, the amount of work
assigned to each GPU decreases and the number of rounds of com-
munication increases. Eventually, the large overheads of entering
and exiting a kernel between the computation and communica-
tion phases will dominate the runtime, even when there is enough
parallelism to make GPUs attractive.
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Figure 3: Overview of the control flow of different network-
ing strategies on the GPU. GPUTriggeredNetworking (GPU-
TN) utilizes the CPU to construct a command packet for the
GPU to initiate, bypassing an expensive control flow switch
on the critical path. GPU-TN supports flexible, intra-kernel
networking using triggered operation semantics on the NIC.
Note that the time spent is not drawn to scale.

In contrast to kernel boundary networking, some prospective
research communication models propose initiating network mes-
sages from within a kernel itself. These GPU-centric networking
models allow for more autonomy on the GPU, avoid the steep ker-
nel initiation and teardown costs discussed previously, and provide
a more natural interface for programmers to express fine-grained
communication patterns.

Current intra-kernel networking mechanisms can largely be bro-
ken down into two classes depending on their design. The first
approach, which we will refer to as GPU Native Networking, con-
structs a networking stack on the GPU itself [8, 22, 23, 30, 31]. GPU
scratchpad memory and persistent kernels (i.e. kernels that last for
the entire duration of the program), are used to hold network and
connection state, allowing the GPU to communicate with the NIC
without any intervention from the CPU. While some works show
promise with running a network stack on the GPU [22, 23], others
illustrate poor performance [31] or suffer correctness issues [8]
related to the GPU’s relaxed memory model.

The second GPU-centric approach, which we will refer to as
GPU Host Networking, defines a lightweight, GPU-optimized in-
terface between the GPU and the CPU [13, 21, 36]. The GPU writes
the payload to a bounce buffer and hands it off to the CPU. The
CPU performs the heavy lifting of creating a network compatible
command packet pointing to the provided buffer before handing
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Table 1: Qualitative comparison of discussed GPU networking strategies. The accompanying text describes the overheads.

GPU Triggered Intra-Kernel GPU Overhead CPU Overhead
Host-Driven Networking (HDN) [10, 25, 35] No No Kernel Boundary Network Stack
GPU Native Networking [8, 22, 23, 30, 31] Yes Yes Network Stack NA
GPU Host Networking [13, 21, 26, 36] No Yes CPU/GPU Queues Service Threads, Network Stack
GPU Direct Async (GDS) [33] Yes No Kernel Boundary, Trigger Partial Network Stack
GPU Triggered Networking (GPU-TN) Yes Yes Trigger Partial Network Stack

it off to the NIC. While it is possible to achieve high bandwidth in
this approach, it does incur a latency penalty by requiring the CPU
to construct messages. Additionally, one or more helper threads
are required on the CPU to process messages on the GPU’s be-
half. Introducing helper threads ties up CPU resources that could
otherwise be used for useful computation.

In this paper, we introduce a new flavor of intra-kernel GPU
communication that we call GPU Triggered Networking (GPU-
TN). GPU-TN implements a NIC hardware mechanism by which
the GPU can directly trigger the NIC from within a kernel as in
GPU Native/Host Networking, while still providing high levels of
performance without a critical path CPU helper thread. In this
approach, the host CPU is responsible for creating the network
command packet on behalf of the GPU and registering it with
the NIC. When the GPU is ready to send a message, it simply
“triggers” the NIC using a memory-mapped store operation. A small
amount of additional hardware in the NIC collects these writes
from the GPU and initiates the pending network operation when a
threshold condition has been met. An overview of the control flow
of all discussed GPU networking frameworks, including GPU-TN, is
presented in Figure 3. GPU-TN provides the following advantages
over the previously discussed GPU networking paradigms:

• GPU Triggered: Like GDS and GPU Native Networking ap-
proaches, GPU-TN utilizes the GPU to ring the doorbell of the
NIC. Critical path control flow switches between the CPU and
GPU are avoided by allowing the GPU to initiate network trans-
fers by communicating directly with the network adaptor.

• Intra-Kernel Initiation: GPU-TN allows for GPU kernel code
to specify network initiation points. This programming model
enables more fine-grained and frequent messaging capabilities
than kernel-boundary communication. Additionally, it is much
easier to overlap network operations with local computation
since individual work-groups and threads can send messages
independently.

• Reduced GPU Overhead: Since the CPU constructs the net-
work packet and registers it with the NIC, GPU-TN avoids perfor-
mance problems that have impaired some previous GPU Native
Networking intra-kernel solutions. Additionally, GPU-TN elim-
inates the heavyweight kernel startup/teardown costs implicit
to kernel boundary networking strategies. This is particularly
important with strong scaling, as high kernel launch overheads
will eventually dominate total execution time.

• Reduced CPU Overhead: GPU-TN does not require helper
threads on the CPU to poll for and service GPU message re-
quests. Removing helper threads on the CPU saves power and
frees up the CPU to perform more useful work. These helper

threads are common to all GPU Host Networking programming
models.

• Relaxed Synchronization: The GPU can initiate messages that
have not yet been posted by the CPU, providing hardware-level
synchronization to associate the two operations on the NIC. This
allows for overlapping the network post operation from the host
with the kernel launch on the GPU.

A qualitative comparison of GPU-TN with alternative networking
approaches is presented in Table 1.

GPU-TN is inspired by triggered operations [34], which are
used to optimize sequences of related networking activities in
high-performance NICs and switches. It is also inspired by a CPU-
side, multi-threaded message passing technique called partitioned
send [11], which optimizes communication in systems where each
thread contributes a small portion of data to the total message.

This paper explores the design and evaluation of GPU-TN.We de-
scribe the division of responsibilities between the host CPU and the
GPU, and the small amount of hardware changes that are needed
to implement triggered operation semantics on the NIC. We also
describe how GPU-TN’s intra-kernel API offers a high degree of
flexibility for the kernel programmer. Finally, we evaluate GPU-TN
in the context of a simple microbenchmark, a Jacobi decomposition
representative of many iterative stencils, an important MPI collec-
tive operation, and emerging machine learning applications. We
show that GPU-TN can provide up to 25% performance improve-
ment over GDS-like approaches, and up to 35% over an optimized
HDN solution across varying size clusters up to 32 nodes.

2 BACKGROUND
This section provides a brief overview of the technologies underly-
ing this work. Specifically, we provide an introduction to relevant
GPU architectural features and high-performance networking con-
cepts.

2.1 GPGPU Overview
General-purpose computing on graphics processing units (GPGPUs)
involves offloading structured, data parallel sections of workloads to
GPUs. In this work, we will use the OpenCLTM [12] programming
terminology for GPGPUs, however, all GPU structures and concepts
discussed in the paper also have an equivalent representation in
CUDA [28].

2.1.1 GPU Architecture. GPUs are composed of a collection of
compute units (CUs), which in turn are composed of groups of sin-
gle instruction, multiple data units. Groups of GPU threads, each
individually known as a work-item, are scheduled on a compute
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unit in a thread bundle called a work-group. Work-items execut-
ing in the same work-group can efficiently synchronize and com-
municate with each other using an application controlled, shared
storage space called the Local Data Share. The subgroup of threads
dispatched at the same time on a compute unit is known as a wave-
front. Threads in a wavefront operate in lockstep; if a work-item in
a wavefront branches in a different direction than another work-
item, then the wavefront is said to diverge and is executed twice
with an execution mask used to ignore the unwanted results. The
key to achieving good performance on a GPU is to avoid diver-
gence and provide enough work to hide latencies and achieve good
throughput.

2.1.2 GPU Programmability. GPUs are programmed by writing
single instruction, multiple thread (SIMT) functions called kernels.
Each kernel is written from the perspective of a single work-item;
the number of work-items comprising a kernel and the number
of work-items in a work-group are dispatch parameters and are
subject to hardware limitations. Kernels are dispatched on the GPU
using a vendor provided runtime that may be directly visible to
the application or hidden under a more general purpose runtime.
Kernels and launch parameters are communicated with the GPU
using in-memory command queues, which are read by the GPU’s
front-end scheduling unit.

2.2 High-Performance Networking
High-performance networking protocols, such as InfiniBandTM [17],
iWARP [19], Omni-Path [20], and RDMA over Converged Ether-
net (RoCE) [18], can operate using Remote Direct Memory Access
(RDMA) technology to completely avoid the target CPU when per-
forming network operations. RDMA technologies are particularly
useful for implementing one-sided communication semantics. In
one-sided communications, the programmer or runtime exposes
a region of memory to a remote node, which can then be directly
accessed using get or put operations, which are analogous to loads
and stores on a single node. The CPU at the target node is unaware
of the operations occurring on the exposed data; synchronization
is separate from data movement in traditional one-sided semantics.
This paradigm stands in contrast to the more traditional send/re-
ceive, two-sided communication popularized by earlier versions
of the Message Passing Interface (MPI) [27], which provides both
data movement and synchronization in the same calls. In this paper,
GPU-TN implements one-sided communication semantics, as their
simplicity makes them a natural fit for GPUs.

3 THE GPU-TN ARCHITECTURE
This section describes the GPU-TNmodel. We explore how the CPU
and GPU interact during normal operation and how race conditions
between the two are resolved. We also illustrate that GPU-TN can
be incorporated into a high-performance NIC with little hardware
complexity.

GPU-TN uses a hybrid CPU/GPU primitive to enable network
communication initiated by a GPU from within a kernel. The main
idea is to support efficient networking from the GPU by offloading
the serial communications runtime and network packet creation
to the CPU, while still allowing the GPU to initiate the network
operation directly by performing a simple memory-mapped write
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Figure 4: Overview of a GPU triggered operation in GPU-TN.
The CPU initializes the network operation, which is trig-
gered by the GPU from within a kernel when the message
is ready to be sent.

operation of a tag to a particular address. Each trigger operation
is completely independent and can be activated separately, which
enables efficient networking from within a kernel. This avoids the
high hardware scheduler cost present in kernel-boundary network-
ing solutions and enables more fine-grained messaging capabilities.

3.1 Overview
Figure 4 shows the steps involved in performing a GPU-TN en-
hanced networking operation on the initiator. The CPU first creates
the network operation, allocates memory for the message buffer,
and sends the command to the NIC 1 . The CPU is responsible
for creating the network operation using the triggered operations
API (see Section 4) and registering it with the NIC. The network
runtime library allocates a trigger entry to represent the state of a
triggered operation on the NIC and appends this entry to a list of all
registered entries called the trigger list. A trigger entry is composed
of the following fields:
• Network Operation: Description of the network operation and

all the metadata required to execute that operation, such as a
pointer to the memory resident send buffer, length, target id, etc.

• Tag: Unique identifier for this trigger entry.
• Counter: A counter collecting the number of writes to the trig-

ger address matching this Tag.
• Threshold: Constant value representing the number of writes

to collect before initiating the network operation.
Once a trigger entry has been allocated and is visible to the NIC,
the GPU kernel is launched and is provided one or more tags, along
with a memory-mapped address with which to activate trigger
operations. We will refer to this address as the trigger address. Dur-
ing kernel execution, the GPU will populate the send buffer with
data to send to another node 2 . After the send buffer is populated,
the GPU notifies the NIC that the triggered put operation is ready
by performing a posted write operation to the memory-mapped
trigger address, supplying the tag of the message that it wants to
initiate 3 . This write is routed to the NIC and placed in a FIFO
associated with the trigger address. The NIC pops entries from the
FIFO and searches the trigger list for a tag match on a trigger entry.
When a match is found, the NIC increments the counter value as-
sociated with the matching trigger entry. When the counter value
becomes greater than or equal to the CPU-provided threshold, the
NIC performs the associated network operation 4 .
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3.2 Relaxed Synchronization Model
As presented, the current design requires the CPU to first post the
network operation before the GPU activates it. This dependency
implies explicit software-based synchronization between the CPU
and GPU, which once again places the CPU in the critical path of
GPU operation. However, a small modification of the base GPU-TN
design can resolve these races by allowing the CPU and GPU to
naturally synchronize with hardware support on the NIC. The GPU
can safely trigger operations that have not yet been registered with
the NIC. This is a useful performance optimization, as the posting of
the network operation can be overlapped with the kernel execution
with no synchronization between the CPU and GPU.

If the NIC receives a write to the trigger address that does not
match any tags, then the NIC allocates a trigger entry for this tag
without a corresponding network operation or threshold. Subse-
quent writes to the trigger address that match this tag will incre-
ment the counter as normal. However, the NIC will not initiate the
network operations, as the CPU has not yet provided the operation
or threshold.

When the host CPU registers the triggered network operation,
the NIC checks to see if the tag matches any trigger entries that are
already allocated in the trigger list. If so, the new triggered opera-
tion is associated with the existing counter. If the counter value is
already greater than or equal to the threshold, the network opera-
tion is executed immediately. Otherwise, the threshold and network
operation fields of the matching trigger entry are populated and
the system works as previously described in Section 3.1.

3.3 NIC Hardware Extensions
GPU-TN requires minimal modifications to a standard RDMA net-
work interface to support these new semantics. The simplest imple-
mentation would store the trigger list in main memory, and allow
a cache on the NIC to save frequently accessed structures. Each
trigger entry would be relatively small (on the order of one or two
64 byte cache lines) depending on the size of the associated network
operation.

If the NIC is implemented using a programmable microprocessor,
the logic-level changes required for GPU-TN would be simple to

...
// 1 Initialize RDMA comm layer
int rank = RdmaInit ();
void * buf = malloc(BUFFER_SIZE);
// 2 Register operations with the NIC
for (int i = 0; i < N_MSGS; i++)

TrigPut(TAG + i, buf , target , thresh , ...);
// 3 Request trigger address from NIC
char *trigAddr = GetTriggerAddr ();
// 4 Launch GPU Kernel
LaunchKern(trigAddr , TAG , N_MSGS , buf , ...);
// 5 Cleanup , do more compute , etc.
...

Figure 6: Pseudocode illustrating the responsibilities of the
host CPU in GPU-TN. The host CPU constructs a network
packet on behalf of the GPU, but is not involved in the net-
work transfer on the critical path.

add in software. If the NIC is implemented using custom logic,
Figure 5 illustrates the primary modifications. Two comparators
and an incrementer can be added specifically for the purpose of
performing triggered operations, or the arithmetic could utilize
shared resources in a more traditional computational pipeline.

As described, trigger entries are logically organized as a linked
list. When a GPU writes to the trigger address, the NIC must be able
to efficiently search the trigger list to see if there is a match. While
at least one commercial product has successfully implemented hard-
ware linked lists to satisfy the Portals 4 specification [6], simpler
design alternatives can be considered to reduce hardware complex-
ity. Additionally, the NIC needs to be able to support absorbing
triggers from potentially thousands of GPU threads in quick succes-
sion, which further motivates the adoption of a lightweight trigger
entry lookup.

Limiting the number of active trigger entries would make it pos-
sible to perform a simple associative lookup in hardware to perform
tag matching. Alternatively, a simple hash table structure can be
used to avoid extensive list traversals. Our prototype implementa-
tion evaluated in Section 5 requires no more than 16 simultaneous
active trigger operations, which allows us to adopt the associative
lookup optimization with small hardware overhead.

3.4 GPU-TN and Dynamic Communication
GPU-TN’s fundamental approach of dictating the communications
pattern on the CPU imposes a static networking scheme. Buffer loca-
tions, message sizes, target nodes, and other important networking
metadata are predetermined on the CPU, and are not dynamically
computed on the GPU. While this scheme is useful for a variety of
important networking primitives and applications (see Section 5),
it could prove limiting for some more dynamic applications.

For the applications explored in this work, we were able to ad-
here to the static GPU-TN scheduling scheme, which offers the
best performance at the cost of some flexibility. However, the base
GPU-TN design can be extended to support more dynamic commu-
nication capabilities at the cost of some additional GPU-side control
flow divergence. Instead of merely writing a tag to the NICs trigger
address, the GPU could contribute more fields dynamically, such
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__kernel void
kern1(__global char *trigAddr ,

const int tagBase ,
__global void *buffer)

{
// do work
...
buffer = ...;
atomic_work_item_fence(...);
int id = get_global_id(...);
atomic_store_explicit(

trigAddr , tagBase + id,
...);

// do additional work
...

}

(a) Work-item-level networking.

__kernel void
kern2(__global char *trigAddr ,

const int tagBase ,
__global void *buffer)

{
// do work
...
buffer = ...;
work_group_barrier(...);
if (! get_local_id(...)) {

int id = get_group_id(...);
atomic_store_explicit(

trigAddr , tagBase + id,
...);

}
// do additional work
...

}

(b) Work-group-level networking.

__kernel void
kern3(__global char *trigAddr ,

const int tag ,
__global void *buffer)

{
// do work
...
buffer = ...;
work_group_barrier(...);
if (! get_local_id(...)) {

atomic_store_explicit(
trigAddr , tag , ...);

}
// do additional work
...

}

(c) Kernel-level networking.

Figure 7: GPU kernel pseudocode illustrating how to trigger network transfers through GPU-TN for different granularities.

as the input buffer pointer or target node identifier. In some sense,
GPU-TN currently exists as one extreme point on a continuum of
GPU networking styles that tradeoff performance and flexibility.
However, we leave a detailed treatment and analysis of a more
dynamic implementation of GPU-TN as future work.

4 PROGRAMMING MODEL
GPU-TN provides a low-level programming interface suitable for
runtime library developers to implement highly optimized network-
ing code. In this section, we will describe the host-facing API for
registering triggered operations with the NIC. We will also describe
a number of sample GPU kernels illustrating the flexibility of the
GPU-TN programming model.

4.1 Host API
The CPU-side interface of GPU-TN is responsible for performing
the serial tasks of packet construction and network runtime man-
agement. Figure 6 shows the essential host-side steps in GPU-TN.
First, the network communications runtime performs general net-
work initialization and allocates the send buffer 1 . Then, the host
code registers a number of operations with the NIC, providing a
threshold and unique tag-based identifier for every operation 2 .
The NIC runtime library allocates a trigger entry for this opera-
tion. Next, the memory-mapped triggered address is extracted from
the networking runtime so that it can be provided to the GPU 3 .
This trigger address is then passed as a kernel argument when the
kernel is launched, along with one or more tags 4 . The GPU can
then write one or more tags to the trigger address to increment
the counter on the NIC, which will perform the network operation
when this counter reaches the threshold. Finally, the CPU continues
performing other useful computations and network management
tasks 5 .

One key feature of GPU-TN is that steps 4 and 2 do not need
to occur in the order presented in the example. An optimized imple-
mentation can launch the kernel at the beginning of the program
and post the triggered operations to the network at a later time.
This allows overlap of the network operation post and the execu-
tion of the kernel. The architecture needed to support this feature
is described in Section 3.2.

4.2 Kernel API
Intra-kernel networking offers numerous benefits over traditional
kernel-boundary communication [8, 21–23, 30, 31, 36]. In GPU-TN,
network operations can be initiated as a store instruction from
the perspective of the GPU; this offers a simple, yet powerful, net-
working interface for kernel programmers and runtime developers.
In this section, we illustrate how GPU-TN can be supported at
multiple granularities. Figure 7 provides example kernels for each
granularity using an OpenCL-like pseudocode syntax.

4.2.1 Work-item/Work-group-Level. In Figures 7a and 7b, net-
work operations are triggered at the work-item/work-group level.
Every work-item/work-group is associated with a tag, and a range
of tags corresponding to the total number of work-items/work-
groups are allocated to this kernel by the host and passed in as a
kernel argument. The CPU-provided threshold value for trigger-
ing the operation would, in this case, be 1. The only difference
between the work-item and work-group interface is the presence
of a work-group barrier in the latter.

4.2.2 Kernel-Level. Figure 7c shows an example where network
operations are triggered at the kernel-level. Since there are currently
no efficient kernel-level synchronization primitives available in
OpenCL, this approach uses the counter in the trigger entry on
the NIC to synchronize. Like the work-group-level example before
it, each work-group writes to the trigger address using a leader
work-item after a work-group-level barrier. However, only one tag
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is provided for the entire kernel, and the CPU provided threshold
is set to the number of work-groups that need to be executed in
this kernel. The NIC-resident counter is decremented and sends the
message when it receives a number of writes from the GPU equal
to the number of work-groups in the kernel.

It is important to note that the above work-group and kernel mes-
saging approaches could also be accomplished without control flow
divergence by having every work-item in the work-group/kernel
write the same tag, and setting the NIC counter value to the num-
ber of work-items in a work-group/kernel. However, since efficient
work-group barriers are available in all GPUs, memory accesses
can be avoided by using the leader work-item approach.

4.2.3 Mixed-Granularity. Additional granularities that are com-
binations of the above can be expressed by taking advantage of
the trigger entry threshold and counter. For example, it would be
simple to send a message for every pair of work-items by setting
the threshold for the operation to 2 instead of 1, and using half
as many tags as the single work-item approach. This offers the
programmer a significant amount of freedom to experiment with
different message sizes and quantities to take advantage of the
natural tendencies of the underlying algorithm, and to experiment
with optimal patterns for the hardware.

4.2.4 Local Completion. Finally, while the host CPU manages
the complicated NIC data structures, it is important to expose an
additional hook to the GPU so that it can check completion of the
network operation. For puts, this defines when it is safe for the GPU
to reuse the send buffer. For gets, completion defines when the data
has been received from the target. In GPU-TN, we simply expose
an additional global variable for each trigger operation that is set
by the NIC on message completion. While this is not shown in our
simple examples in Figure 7, the GPU threads can query this location
to determine completion status of individual network operations
without the complexity of monitoring a network completion queue.

4.2.5 Target-Side Completion. GPU-TN implements a one-sided
communication style described in Section 2, which fits very natu-
rally with the hardware capabilities of the GPU [14]. Complex tag
matching and deep runtime stacks present in two-sided communi-
cation paradigms like MPI introduce software complexity that is
difficult to efficiently implement on GPUs. As with many one-sided
communication styles, GPU-TN does not define the target-side
semantics for a remote GPU to receive messages.

If the target needs to know that it has received data in the case of
a put, either the host CPU or the GPU itself can monitor a network
completion queue. Alternatively, many partitioned global address
space (PGAS) languages that leverage one-sided communication use
polling on variables at the target to build notification mechanisms.
More complex semantics such as execution barriers can be built
out of these primitives.

4.2.6 GPU-TN and the GPU’s Scoped Memory Model. Modern
GPUs operate using a relaxed memory model, where explicit fences
and scope specifiers need to be provided by the programmer in order
to ensure correct visibility and ordering of memory accesses by dif-
ferent agents in the system [16]. By default, languages like OpenCL
only provide visibility within a workgroup. System scope accesses
from within a GPU kernel are particularly difficult, and require

Table 2: GPU-TN simulation configuration.

CPU and Memory Configuration
Type 8 Wide OOO, 4GHz, 8 cores
I,D-Cache 64K, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 4 cycles
L3-Cache 16MB, 16-way, 20 cycles
System Memory DDR4, 8 Channels, 2133MHz

GPU Configuration
Type 1 GHz, 24 Compute Units
D-Cache 16kB, 64B line, 16-way, 25 cycles
I-Cache 32kB, 64B line, 8-way, 25 cycles
L2-Cache 768kB, 64B line, 16-way, 150 cycles
Kernel Latencies 1.5µs launch / 1.5µs teardown

Network Configuration
Latency 100ns Link, 100ns Switch
Bandwidth 100Gbps
Topology Star (single switch)

the use of OpenCL 2.0 atomics with the appropriate global mem-
ory scope specifier (in this case, memory_scope_all_svm_devices),
which may not be supported on all current GPU devices. However,
we believe that this is a temporary constraint, and that future GPUs
will implement more system scope operations in the future.

The examples in Figure 7 contain two interesting interactions
with the GPU memory model. The first is the write to the trigAddr
variable, which must be accessed using an explicit atomic store to
system scope so that the GPU caches are bypassed.

The second, and more interesting, interaction concerns the net-
work buffer itself. This buffer must be globally visible to the NIC
before the write to trigAddr occurs. This is accomplished by setting
the scope of the synchronization after the buffer write to the system
level with release memory ordering semantics. Similarly, a system
scope acquire operation must be used to ensure that the GPU sees
updates from the NIC itself.

5 EVALUATION
GPU-TN can offer significant performance improvements in sys-
tems utilizing networks of GPUs. In this section, we evaluate GPU-
TN over a latency microbenchmark, a 2D Jacobi relaxation stencil,
an important MPI collective operation, and deep learning work-
loads.

5.1 Experimental Setup
To evaluate GPU-TN, we use the open-source gem5 simulator [5]
including the AMD public GPU compute model [4]. Table 2 shows
the specific configuration for the major components of our infras-
tructure. We configure our system to resemble a compute node
containing a CPU, GPU, and NIC. Our GPU model is configured as
part of a high-performance SoC, where the CPU and GPU share sys-
tem memory and are coherent. This avoids memory copies between
GPU and CPU address spaces and minimizes offload times from
the CPU to the GPU. While we have selected this configuration
for our analysis, GPU-TN can still be applied in a more traditional
discrete GPU architecture, provided they support the advanced
system synchronization operations discussed in Section 4.2.6.
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Figure 8: GPU-TN vs HDN vs GDS latency decomposition from a small microbenchmark. GPU-TN achieves approximately 35%
performance improvement over an HDN approach and 25% improvement over GDS.

Our infrastructure simulates multi-node configurations with a
simple switch and wire delay model. The NIC model implements
the Portals 4 [34] network programming specification with custom
GPU-TN functions implemented using an API similar to existing
Portals 4 triggered operations.

The removal of GPU kernel boundary latencies to send network
messages is a key motivating factor behind GPU-TN. We calibrated
our simulation infrastructure to model some of the more optimistic
numbers derived from our experiments in Figure 1. The perfor-
mance results presented for GPU-TN are based on 3µs of kernel
overhead evenly divided between the launch and teardown phases.
For situations where the number of available kernels exposed to
the hardware scheduler at once are small, Figure 1 indicates that
the performance uplift of GPU-TN could be even higher than the
results reported in this section.

In our experiments, we compare four different networking strate-
gies that we will refer to as CPU, HDN, GDS, and GPU-TN. These
configurations are defined as follows:

• CPU: All computation and communication is done by a CPU.
The CPU configuration represents a non-GPU-accelerated sys-
tem, and is included to separate the baseline benefits of GPU
acceleration from those of GPU-TN as well as provide a sanity
check for problem sizes where GPU acceleration no longer makes
sense.

• HDN:Host-Driven Networking uses the CPU for all communica-
tion and the GPU for acceleration of workload-specific portions
of the computation. Network messages are performed on GPU
kernel boundaries using two sided send/recv semantics. This
represents the classic coprocessor approach to GPU networking
found in most clusters.

• GDS: The GDS baseline approximates the behavior of GPUDirect
Async [33] kernel boundary communication in our simulation
environment. GDS uses the CPU to post a sequence of network
operations to the NIC. After the messages are posted, network
initiation points are integrated into CUDA streams at kernel
boundaries. The GPU front-end scheduling unit initiates the net-
work operation by ringing a doorbell on the NIC after dependent
kernels have completed.

• GPU-TN: GPU Triggered Networking uses triggered operations
to efficiently communicate across nodes. Using this scheme,
CPUs register network messages with the NIC. These messages

are initiated from within a GPU kernel using system scope syn-
chronization and memory-mapped writes when the network
data is ready to send.

5.1.1 Comparison to GPU Host/Native Networking. For our re-
sults, we do not explicitly compare against GPU Host/Native Net-
working approaches as defined in Section 1. This is largely due to
the fact that we are unaware of any open source implementations
of these approaches that are compatible with our simulation envi-
ronment, and implementing our own approaches from scratch is a
considerable effort. However, in this section, we provide a brief qual-
itative discussion of how we expect GPU Host/Native Networking
approaches to compare with GPU-TN.

GPU Native Networking runs the entire networking stack locally
on the GPU. We expect that GPU-TN will offer improved latency
and decreased control flow divergence, due to the fact that the serial
task of creating a network compatible command packet is offloaded
to the CPU.

GPUHost Networking uses dedicated polling threads on the host
to service messages on behalf of the GPU. The key advantage of
GPU-TN over these approaches is that it can provide the same per-
formance without requiring dedicated polling threads on the CPU.
Polling threads on the CPU have a number of disadvantages, such
as a lack of scalability, higher messaging latency, and the waste-
ful consumption of host threads that could be used for additional
computation. However, this benefit is difficult to quantify in the
absence of workloads that could leverage those extra threads.

5.2 Latency Analysis
In this section, we analyze a small microbenchmark to explore
where important latencies reside in the GPU-TN networking flow.
In this example, a kernel executing on an initiator node sends a
message to a target node. The kernel executed by the GPU in this
case is a simple vector copy operation of a single cache line and is
not of particular importance. Most of the time in the GPU kernel
itself is spent during kernel initialization and teardown.

Figure 8 illustrates a latency decomposition of the microbench-
mark implemented using HDN, GDS, and GPU-TN. Both the ini-
tiator and target are separated and displayed on the same absolute
time scale. In HDN, the transitions between GPU and CPU con-
trol flow are obvious; after a kernel completes, the CPU initiates a
network operation to send data to the target. The target polls on a
memory location to determine when the data has been sent.
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For the GDS baseline, the GPU itself initiates the communication
after the kernel has finished execution. The control flow switch
from the GPU back to the CPU is avoided as well as the critical path
construction of the network packet (in GDS, network operations
are posted before-hand by the CPU). GDS results in around a 10%
reduction in latency over the HDN baseline. However, we do wish
to note that a system architecture employing a more traditional dis-
crete GPU setup could see much larger performance improvement
from GDS, since it would avoid a costly critical path control flow
switch over the IO bus.

When comparing the GDS implementation against GPU-TN, we
see two distinct differences. The first is that in GPU-TN, network
operations are initiated in the kernel itself, causing the execution
of a GPU-TN kernel to take slightly longer than the corresponding
GDS kernel. The second observation is that the target node receives
the network data before the kernel on the initiator completes. This
phenomena is a direct result of GPU-TN’s intra-kernel networking.
The network message does not need to wait for kernel termina-
tion before sending the message; a kernel can initiate a network
operation whenever the data is ready. Overall, the GPU-TN ap-
proach achieves approximately 25% performance uplift over GDS,
and approximately 35% improvement over HDN.

5.3 2D Jacobi Relaxation
This section evaluates the performance of GPU-TN over a 2D Jacobi
relaxation problem [24] with various input sizes. Jacobi relaxation
is a method used to determine solutions of a diagonally dominant
system of linear equations. From a computational perspective, it
takes the form of an iterative stencil. During each iteration, a series
of operations are performed on a local data set, followed by a
halo exchange of neighboring data. This pattern of computation
and communication continues until an iteration bound has been
reached, or the residuals from the latest computation falls below a
user-defined threshold. This particular implementation of Jacobi
does not exploit overlap.

We implemented the Jacobi relaxation over our 4 example sys-
tems by splitting the input in 2D. CPU is a standard implementation
of Jacobi using OpenMP for thread-level parallelism, while HDN
is implemented by exiting the kernel and returning to the host for
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Figure 10: GPU-TN strong scaling performance evaluation
on an 8MB MPI Allreduce collective operation. GPU-TN
scales better than HDN/GDS as the number of nodes partic-
ipating in the collective operation increases.

MPI send/receives after every round. GDS and GPU-TN both pre-
register the communication, which is known beforehand since the
communication is highly structured. The difference between GDS
and GPU-TN is that GDS stops and starts a kernel every time, and
GPU-TN uses a single kernel for the entire duration of the program.

Figure 9 illustrates the results of the Jacobi relaxation on our
sample systems. The results are presented as speedup to the HDN
baseline, and represent a single iteration of Jacobi with varying local
problem sizes. When strong scaling Jacobi, one would move “left”
on the graph, while weak scaling would stay at the same point, since
the communication patterns do not significantly change with the
introduction of more nodes. Overall, we see that GPU-TN achieves
approximately 10% improvement over GDS, and approximately 20%
improvement over HDN on medium problem sizes. CPU results
are included in the figure to ensure that the range of problem sizes
GPU-TN offers benefits on do not fall outside what is useful to
offload onto a GPU.

5.4 Collective Operations
Collective operations on clusters of GPUs are a critical primitive op-
eration for a large number of applications, including deep learning,
parallel FFT, molecular dynamics, and graph analytics [7, 29]. In
this section, we use GPU-TN to implement the Allreduce collective
operation in MPI, and demonstrate GPU-TN’s ability to acceler-
ate the performance of workloads written in a popular machine
learning framework, Microsoft’s Cognitive Toolkit [1].

5.4.1 Allreduce. Allreduce is an MPI collective operation that
combines the contents of all participating nodes’ buffers using some
arithmetic operation, as illustrated in Figure 2. At the end of an
Allreduce operation, all participating nodes contain contributions
from every other node. There are a number of topology specific
implementations that optimize the number of messages and opera-
tions performed on all the nodes; for our case study, we will use a
simple ring communications pattern.

We implement GPU-TN in the libNBC [15] non-blocking col-
lectives library. When a collective application is called from the
application, libNBC creates a schedule of subtasks that completely
define all operations and dependencies. In this manner, the collec-
tive operation is performed asynchronously by stepping through
the schedule of tasks in the MPI runtime itself. Schedule creation
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Table 3: CNTK workload description. The %Blocked heading
refers to total time spent blocked on an Allreduce operation,
andReductions refers to the total number of reduction calls.

Name Domain %Blocked Reductions
AlexNet Classification 14% 4672
AN4 LSTM Speech 50% 131192
CIFAR Classification 4% 939820
Large Synth Synthetic 28% 52800
MNIST Conv Text Recognition 12% 900000
MNIST Hidden Text Recognition 29% 900000
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Figure 11: GPU-TN performance across six deep learning
workloads on a cluster of 8 nodes. GPU-TN performs up to
20% better than HDN and 5% better than GDS on select ma-
chine learning workloads.

in libNBC maps perfectly to the triggered operation semantics in
GPU-TN. Indeed, collective operations were one of the original mo-
tivations for the introduction of triggered network semantics [40].

We implement the Allreduce algorithm on CPU, GDS, GPU-
TN, and HDN systems. The implementations of CPU, GDS, and
HDN are similar to what was described in the Jacobi benchmark
evaluation. In GPU-TN, the entire collective operation is performed
fromwithin a single GPU kernel. The GPU kernel polls on amemory
location to know when an adjacent node has contributed data for
the reduction. The GPU work-items then perform the arithmetic
operation and triggers the GPU to send data for the next phase. Our
implementation triggers the network operation at the granularity
of a work-group; this allows for easy software pipelining of the
computation and network transfer.

Figure 10 shows a strong-scaling study of an 8MB collective
operation on all the evaluated configurations. In this example, the
data is single-precision floating point and the operation is a simple
binary addition. Results are reported as speedup relative to the same
operation occurring entirely on the CPU. For large payload sizes
(i.e., small node counts), HDN, GPU-TN, and GDS provide roughly
1.4x speedup over an optimized CPU Allreduce operation. In this
case, the savings gained from quick network initiation in GPU-TN
are dwarfed by the transfer and computation time. However, as
the payload size of each reduction message decreases (i.e., as node
count increases) GPU-TN provides significantly more speed-up
over HDN and GDS. At approximately 24 nodes, HDN Allreduce
operations actually become slower than the equivalent operation
performed on a CPU, while GPU-TN continues to provide speedup
into 32 nodes and beyond.

5.4.2 Deep Learning. Deep learning is an important class of
workload that frequently uses clusters of GPUs to accelerate the
training of neural networks. Neural networks are typically trained
using some form of iterative stochastic gradient descent (SGD) for
a fixed number of training epochs, or until some convergence crite-
rion has been satisfied. In the distributed formulation of SGD, an
Allreduce operation is used to transfer and combine the contents
of every GPUs’ gradient matrix to every other GPU. This gradient
Allreduce operation has been shown to be a significant bottleneck in
deep learning workloads, especially those operating in the synchro-
nous training mode. For our studies, we have selected six machine
learning workloads from a variety of application domains. A brief
description of each is presented in Table 3.

Figure 11 shows how GPU-TN can be used to accelerate training
of neural networks on Microsoft’s Cognitive Toolkit [1] deep learn-
ing platform on a cluster of 8 nodes. To perform our study, we ran
a variety of deep learning workloads on the Stampede supercom-
puter [37] and measured the frequency, time, and data size of the
various Allreduce calls. Using these numbers, we were able to use
results from our simulator to project the application-level speedup
from applying GPU-TN to these workloads. Since these deep learn-
ing workloads were operating in the synchronous training mode,
there are no computation/communication overlap effects to worry
about when performing the projections.

Results vary from little improvement as in the CIFAR workload
up to approximately 20% improvement over HDN and 5% improve-
ment over GDS in AN4 LSTM. This variability has to do with the
different characteristics of Allreduce operations found in these
workloads. The frequency and size of Allreduce operations are de-
pendent on the type of neural network being trained, the number
of participating nodes, and the characteristics of the input data set.
GPU-TN provides the most benefit in scenarios where there are a
large number of small-to-medium-sized collective operations.

6 RELATEDWORK
This section describes related work involving optimizing commu-
nication for GPUs and other accelerators. We attempt to classify
the prior work using the taxonomy introduced in Section 1.

Host-Driven Networking: A few works attempt to optimize
GPU networking while retaining the classic GPU-as-a-coprocessor
style of programming interface. Zippy [10] and Compute Unified
Device and Systems Architecture (CUDASA) [35] were some of the
earliest works in this area. Both expose GPU communication using
a PGAS programming style, where communication is performed at
kernel boundaries on the CPU itself using custom runtime exten-
sions wrapped around MPI. NCCL [29] is a communication library
that performs efficient collective operations across multiple GPUs
in one or many nodes

The most popular commercial GPU networking approach is an
HDN solution called GPUDirect RDMA [25], which allows high-
performance RDMA NICs to directly access GPU local memory
through a PCIe Base Address Register (BAR) window without in-
termediate data copies in system memory. CUDA-aware Open-
SHMEM [14] takes advantage of GPUDirect RDMA features to
optimize data movement for one sided communications. The most
recent version of this technology, GPUDirect Async [33], is used
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as a comparison point to this work and is discussed extensively
throughout the paper.

GPUHostNetworking: Some projects attempt to support GPU
networking through helper threads on the host CPU. FLAT [26]
allows for the automatic generation of CPU MPI codes from GPU
kernels using custom compiler extensions. Distributed Computing
for GPU Networks (DCGN) [36] exposes an MPI-like interface for
GPU kernels to passmessages to GPUs on remote nodes. CPU helper
threads perform communication on behalf of the GPU by tunneling
requests through standard MPI. GPUNet [21] provides a socket-
based abstraction for the GPU, and also uses CPU helper threads
to perform the actual communication. dCUDA [13] implements a
GPU networking programming model that attempts to hide long
latency GPU network events across the cluster. These approaches
differ from GPU-TN in that one or more dedicated, critical path
service thread(s) are required to manage communication on the
CPU.

GPUNative Networking: Some recent work implements GPU
centric networking while trying to avoid CPU helper threads. GPU
Global Address Space (GGAS) [30] explores adding custom hard-
ware in the GPU to support a cluster wide global address space,
where GPUs can communicatewith each other through simple loads
and stores. Oden et al. explore implementing InfiniBand entirely
on a GPU runtime, with mixed results [31]. However, additional
work by the same research group illustrates much more favorable
performance [22, 23]. GPUrdma [8] also implements InfiniBand
directly on the GPU, although limitations of current GPU hard-
ware can cause correctness problems under high load. NVSHMEM
provides an OpenSHMEM-like interface to perform one-sided com-
munciation from within a kernel, but is currently limited to a single
node [32]. Concurrently with our work, Agostini et. al [2] described
several implementations of GPUDirect Async, one of which of of-
fers similar intra-kernel networking semantics to GPUrdma and
GPU-TN.

Triggered Operations: Our work makes use of triggered net-
work operations to improve the networking performance of GPUs.
Triggered operations were introduced in the Portals 4 network
programming API [34] as a way to build efficient sequences of
operations that can be progressed by the NIC. In Portals 4, the
host CPU provides the NIC with a network operation to perform,
and a threshold indicating how many events must occur before
the operation is initiated. A triggered operation is initiated when
a lightweight event counter reaches the specified threshold. Trig-
gered operations have been shown to be effective for implementing
collective operations [40], which generally involve a number of
consecutive steps that need to occur in response to various network
events.

7 CONCLUSION
First-order GPU networking support is essential for multi-node
GPU applications. As GPUs become more tightly integrated into
a node’s compute ecosystem, strong networking paradigms will
likely become essential for good performance.

In this paper, we introduced GPU Triggered Networking (GPU-
TN), a new networking scheme that can combine the best of tra-
ditional host networking approaches without critical path CPU
interactions when initiating network messages from within a GPU

kernel. In GPU-TN, triggered operations are used to pre-register
network operations on the NIC that can be later triggered by the
GPU using a simple memory-mapped write operation. GPU-TN net-
working decouples the CPU and GPU, while still allowing the CPU
to perform serial networking tasks that are not easily implemented
on a GPU. Additionally, GPU-TN can provide variable granulari-
ties of messaging to support a variety of programming paradigms,
while relaxing the kernel-boundary networking restriction that can
impair performance on competing approaches.

GPU-TN was evaluated across a latency microbenchmark, a 2D
Jacobi relaxation stencil, the important Allreduce collective opera-
tion, and emerging machine learning workloads. We illustrate that
GPU-TN is capable of achieving up to 25% performance improve-
ment against a simulated GDS solution, and up to 35% performance
improvement against a traditional Host Driven Networking ap-
proach at scales of up to 32 nodes. We look forward to exploring
more applications that can benefit from the high-performance, intra-
kernel networking that can be provided by GPU-TN acceleration
in future work.

ACKNOWLEDGEMENTS AND ATTRIBUTIONS
We would like to thank the anonymous reviewers for their detailed
feedback, which undoubtedly improved the quality of this work.

The authors acknowledge the Texas Advanced Computing Cen-
ter (TACC) at The University of Texas at Austin and Advanced
Micro Devices Inc. for providing resources that have contributed to
the research results reported within this paper. Mauricio Breternitz
is partially funded by Marie Curie IRIS (ref. 610986, FP7-PEOPLE-
2013-IAPP). Lizy K. John is partially funded by National Science
Foundation grant CCF-1337393. Any opinions, findings, conclu-
sions, or recommendations do not necessarily reflect the views of
these funding agencies.

AMD, the AMD Arrow logo, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL is a trademark of
Apple Inc. used by permission by Khronos. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies.

REFERENCES
[1] Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo Chen, Scott Cyphers,

Jasha Droppo, Adam Eversole, Brian Guenter, Mark Hillebrand, T. Ryan Hoens,
Xuedong Huang, Zhiheng Huang, Vladimir Ivanov, Alexey Kamenev, Philipp
Kranen, Oleksii Kuchaiev, Wolfgang Manousek, Avner May, Bhaskar Mitra,
Olivier Nano, Gaizka Navarro, Alexey Orlov, Hari Parthasarathi, Baolin Peng,
Marko Radmilac, Alexey Reznichenko, Frank Seide, Michael L. Seltzer, Mal-
colm Slaney, Andreas Stolcke, Huaming Wang, Yongqiang Wang, Kaisheng Yao,
Dong Yu, Yu Zhang, and Geoffrey Zweig. 2014. An Introduction to Computa-
tional Networks and the Computational Network Toolkit. Technical Report. Mi-
crosoft. https://www.microsoft.com/en-us/research/wp-content/uploads/2014/
08/CNTKBook-20160217.pdf

[2] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Offloading commu-
nication control logic in GPU accelerated applications. In Intl. Symp. on Cluster,
Cloud and Grid Computing (CCGrid). DOI:https://doi.org/10.1109/CCGRID.2017.
29

[3] Amazon. 2016. Amazon EC2 Cloud Computing. https://aws.amazon.com/ec2
[4] AMD. 2015. The AMD gem5 APU Simulator: Modeling Heterogeneous Systems

in gem5. http://gem5.org/GPU_Models
[5] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad

Shoaib, Nilay Vaish, Mark D. Hill, David A. Wood, Bradford Beckmann, Gabriel
Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R.
Hower, and Tushar Krishna. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1. DOI:https://doi.org/10.1145/2024716.2024718

https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf
https://doi.org/10.1109/CCGRID.2017.29
https://doi.org/10.1109/CCGRID.2017.29
https://aws.amazon.com/ec2
http://gem5.org/GPU_Models
https://doi.org/10.1145/2024716.2024718


SC17, November 12–17, 2017, Denver, CO, USA M. LeBeane et al.

[6] Bull. 2017. BXI: Bull eXascale Interconnect. https://atos.net/en/products/
high-performance-computing-hpc/bxi-bull-exascale-interconnect

[7] Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad
Awan, and Dhabaleswar K. Panda. 2016. CUDA Kernel Based Collective Reduc-
tion Operations on Large-scale GPU Clusters. In Intl. Symp. on Cluster, Cloud
and Grid Computing (CCGrid). DOI:https://doi.org/10.1109/CCGrid.2016.111

[8] Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUrdma: GPU-side
Library for High Performance Networking from GPU Kernels. In Intl. Workshop
on Runtime and Operating Systems for Supercomputers (ROSS). 6:1–6:8. DOI:
https://doi.org/10.1145/2931088.2931091

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Intl.
Symp. on Computer Architecture (ISCA). 365–376. DOI:https://doi.org/10.1145/
2000064.2000108

[10] Zhe Fan, Feng Qiu, and Arie E. Kaufman. 2008. Zippy: A Framework for Com-
putation and Visualization on a GPU Cluster. Computer Graphics Forum 27, 2
(2008), 341–350. DOI:https://doi.org/10.1111/j.1467-8659.2008.01131.x

[11] Ryan E Grant, Anthony Skjellum, and V Purushotham. 2015. Lightweight thread-
ing with MPI using Persistent Communications Semantics. In Workshop on
Exascale MPI (ExaMPI).

[12] Khronos Group. 2017. OpenCL. https://www.khronos.org/opencl/
[13] Tobias Gysi, Jeremia Bär, and TorstenHoefler. 2016. dCUDA:Hardware Supported

Overlap of Computation and Communication. In Intl. Conf. for High Performance
Computing, Networking, Storage and Analysis (SC) (SC ’16). Article 52, 12 pages.
DOI:https://doi.org/10.1109/sc.2016.51

[14] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari Subramoni,
Ching-Hsiang Chu, and Dhabaleswar K. Panda. 2016. CUDA-Aware OpenSH-
MEM: Extensions and Designs for High Performance OpenSHMEM on GPU
Clusters. Parallel Comput. 58 (2016), 27–36. DOI:https://doi.org/10.1016/j.parco.
2016.05.003

[15] Torsten Hoefler and Andrew Lumsdaine. 2006. Design, Implementation, and
Usage of LibNBC. Technical Report. Indiana University Bloomington. http:
//www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR637

[16] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Benedict R. Gaster,
Mark D. Hill, Steven K. Reinhardt, and David A. Wood. 2014. Heterogeneous-
race-free Memory Models. In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[17] InfiniBand Trade Association. 2000. InfiniBand Architecture Specification: Re-
lease 1.0.2. http://www.infinibandta.org/content/pages.php?pg=technology_
download

[18] InfiniBand Trade Association. 2014. RDMA over Converged Ethernet v2. https:
//cw.infinibandta.org/document/dl/7781

[19] Intel. 2010. Internet Wide Area RDMA Protocol (iWARP). http://www.intel.com/
content/dam/doc/technology-brief/iwarp-brief.pdf

[20] Intel. 2015. Omni-Path Fabric 100 Series. https://fabricbuilders.intel.com/
[21] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir

Wated, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU
Programs. In USENIX Conf. on Operating Systems Design and Implementation
(OSDI). 201–216. DOI:https://doi.org/10.1145/2963098

[22] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing Put/Get APIs
for Thread-Collaborative Processors. In Intl. Conf. on Parallel Processing (ICPP)

Workshops. DOI:https://doi.org/10.1109/ICPPW.2014.61
[23] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing communica-

tion models for distributed thread-collaborative processors in terms of energy
and time. In Intl. Symp. on Performance Analysis of Systems and Software (ISPASS).
DOI:https://doi.org/10.1109/ISPASS.2015.7095817

[24] Jim Lambers. 2010. Jacobi Methods. http://web.stanford.edu/class/cme335/
lecture7.pdf

[25] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. http://www.mellanox.com/
page/products_dyn?product_family=116

[26] Takefumi Miyoshi, Hidetsugu Irie, Keigo Shima, Hiroki Honda, Masaaki Kondo,
and Tsutomu Yoshinaga. 2012. FLAT: A GPU Programming Framework to
Provide Embedded MPI. InWorkshop on General Purpose Processing with Graphics
Processing Units (GPGPU). 20–29. DOI:https://doi.org/10.1145/2159430.2159433

[27] MPI Forum. 2012. MPI: A Message-Passing Interface Standard. Ver. 3. www.
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[28] Nvidia. 2016. CUDA Toolkit 8.0. https://developer.nvidia.com/cuda-toolkit
[29] Nvidia. 2016. Fast Multi-GPU collectives with NCCL. https://devblogs.nvidia.

com/parallelforall/fast-multi-gpu-collectives-nccl/
[30] Lena Oden and Holger Froning. 2013. GGAS: Global GPU address spaces for

efficient communication in heterogeneous clusters. In Intl. Conf. on Cluster Com-
puting (CLUSTER). 1–8. DOI:https://doi.org/10.1109/cluster.2013.6702638

[31] LenaOden, Holger Froning, and Franz-Joseph Pfreundt. 2014. Infiniband-Verbs on
GPU: A Case Study of Controlling an Infiniband Network Device from the GPU.
In Intl. Conf. on Parallel Distributed Processing Symposium Workshops (IPDPSW).
976–983. DOI:https://doi.org/10.1109/ipdpsw.2014.111

[32] Sreeram Potluri, Nathan Luehr, and Nikolay Sakharnykh. 2016. SimplifyingMulti-
GPU Communication with NVSHMEM. http://on-demand-gtc.gputechconf.
com/gtc-quicklink/7D7mU

[33] Davide Rossetti. 2015. GPUDirect Async. http://on-demand.gputechconf.com/
gtc/2015/presentation/S5412-Davide-Rossetti.pdf

[34] Sandia National Laboratories. 2014. The Portals 4.0.2 Network Programming
Interface. http://www.cs.sandia.gov/Portals/portals402.pdf

[35] Magnus Strengert, Christoph Müller, Carsten Dachsbacher, and Thomas Ertl.
2008. CUDASA: Compute Unified Device and Systems Architecture. In Eu-
rographics Conf. on Parallel Graphics and Visualization (EGPGV). DOI:https:
//doi.org/10.2312/EGPGV/EGPGV08/049-056

[36] Jeff A. Stuart and John D. Owens. 2009. Message passing on data-parallel ar-
chitectures. In Intl. Symp. on Parallel Distributed Processing (IPDPS). 1–12. DOI:
https://doi.org/10.1109/ipdps.2009.5161065

[37] TACC. 2015. Stampede Supercomputer User Guide. https://portal.tacc.utexas.
edu/user-guides/stampede

[38] TOP500.org. 2016. Green 500. http://www.top500.org/green500
[39] TOP500.org. 2017. Highlights - June 2017. https://www.top500.org/lists/2017/

06/highlights/
[40] Keith D. Underwood, Jerrie Coffman, Roy Larsen, K. Scott Hemmert, Brian W.

Barrett, Ron Brightwell, and Michael Levenhagen. 2011. Enabling Flexible Col-
lective Communication Offload with Triggered Operations. In Symp. on High
Performance Interconnects (Hot Interconnects). DOI:https://doi.org/10.1109/HOTI.
2011.15

https://atos.net/en/products/high-performance-computing-hpc/bxi-bull-exascale-interconnect
https://atos.net/en/products/high-performance-computing-hpc/bxi-bull-exascale-interconnect
https://doi.org/10.1109/CCGrid.2016.111
https://doi.org/10.1145/2931088.2931091
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1111/j.1467-8659.2008.01131.x
https://www.khronos.org/opencl/
https://doi.org/10.1109/sc.2016.51
https://doi.org/10.1016/j.parco.2016.05.003
https://doi.org/10.1016/j.parco.2016.05.003
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR637
http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR637
http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.infinibandta.org/content/pages.php?pg=technology_download
https://cw.infinibandta.org/document/dl/7781
https://cw.infinibandta.org/document/dl/7781
http://www.intel.com/content/dam/doc/technology-brief/iwarp-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/iwarp-brief.pdf
https://fabricbuilders.intel.com/
https://doi.org/10.1145/2963098
https://doi.org/10.1109/ICPPW.2014.61
https://doi.org/10.1109/ISPASS.2015.7095817
http://web.stanford.edu/class/cme335/lecture7.pdf
http://web.stanford.edu/class/cme335/lecture7.pdf
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/page/products_dyn?product_family=116
https://doi.org/10.1145/2159430.2159433
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://developer.nvidia.com/cuda-toolkit
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://doi.org/10.1109/cluster.2013.6702638
https://doi.org/10.1109/ipdpsw.2014.111
http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU
http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://www.cs.sandia.gov/Portals/portals402.pdf
https://doi.org/10.2312/EGPGV/EGPGV08/049-056
https://doi.org/10.2312/EGPGV/EGPGV08/049-056
https://doi.org/10.1109/ipdps.2009.5161065
https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
http://www.top500.org/green500
https://www.top500.org/lists/2017/06/highlights/
https://www.top500.org/lists/2017/06/highlights/
https://doi.org/10.1109/HOTI.2011.15
https://doi.org/10.1109/HOTI.2011.15

	Abstract
	1 Introduction
	2 Background
	2.1 GPGPU Overview
	2.2 High-Performance Networking

	3 The GPU-TN Architecture
	3.1 Overview
	3.2 Relaxed Synchronization Model
	3.3 NIC Hardware Extensions
	3.4 GPU-TN and Dynamic Communication

	4 Programming Model
	4.1 Host API
	4.2 Kernel API

	5 Evaluation
	5.1 Experimental Setup
	5.2 Latency Analysis
	5.3 2D Jacobi Relaxation
	5.4 Collective Operations

	6 Related Work
	7 Conclusion
	References

