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EXECUTIVE SUMMARY

 Intermediate Language (IL)

‒ ISA for virtual machine

‒ Represents data parallel execution well

‒ Primarily designed for compiler 
optimizers

 Lots of details abstracted

‒ GPU pipeline is SW managed

‒ Machine ISA manages lots state for 
various HW/SW interfaces

HIGH-LEVEL DIFFERENCES: IL VS. MACHINE ISA
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AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

 HW runtime correlation and error

 Conclusion
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Application binary interface

• Binary format

• Functional call convention

• Special value location

• System calls

• And more…

CYCLE-LEVEL SIMULATION IS IMPORTANT

 Rapid prototyping of research ideas

 Open-source – inexpensive!

SW ABSTRACTIONS

GPU µArch 
model

SW Layer

MEM

GPU Simulator

ISA µArch

IL

Stable Change frequently

Runtime 
API

High-level SW

ABI State

OS Driver
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CYCLE-LEVEL SIMULATION IS IMPORTANT
GPUS: OLD VS. NEW VIEW

GPU µArch 
model

SW Layer
Kernel launch

MEM

Kernel data

GPU Simulator

20% speed up

Old View:  GPU is an accelerator for offloading 
data parallel functions from the CPU.

New View:  GPU as primary HPC and 
datacenter compute device. CPU used for I/O, 

system services, etc.

We must understand how to properly model the 
HW/SW interfaces in light of this new view.
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GPU IS A HW/SW CO-DESIGNED MACHINE

HIGH-LEVEL SOFTWARE INTERACTIONS

HLC Finalizer

MEM

CU

Application 
source

x86 ELF

IL Binary

GPU ISA 
Binary

Runtime

HLC
Libraries

Drivers

Command 
Processor

Hardware

GPU

High level compiler (HLC) generates IL from
source

Finalizer or JIT generates machine ISA from IL,
instruction schedules are HW dependent

Runtime API used to trigger dispatch

GPU command processor (CP) 
aids in implementing API call

1) Two-phase compilation flow

2) Rich runtime layer

3) Co-designed HW tightly coupled to runtime

Runtime/driver allocate and manage GPU HW per processAs GPU SW stack becomes more complex, 
emulation becomes more difficult

4) CP + binary + runtime implement ABI

Kernel driver is much easier to maintain – only 
need ioctl()

By coupling simulation infrastructure to OS layer only,
we have the flexibility to easily support other
programming models.
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OVERVIEW OF SOFTWARE ABSTRACTIONS IN STATE-OF-THE ART SIMULATORS

GPU SIMULATORS

Runtime Support ISA ABI Support

GPGPU-Sim Emulated IL Simplified by simulator

Multi2Sim Emulated IL/Machine ISA Simplified by simulator

gem5 Emulated IL Simplified by simulator
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OVERVIEW OF SOFTWARE ABSTRACTIONS IN STATE-OF-THE ART SIMULATORS

GPU SIMULATORS

Runtime Support ISA ABI Support

GPGPU-Sim Emulated IL Simplified by simulator

Multi2Sim Emulated IL/Machine ISA Simplified by simulator

gem5 Off-the-shelf Machine ISA Models real ABI

 This work adds

 GCN3 support – AMD’s GPU machine ISA

 HSA ABI

 Support for off-the-shelf ROCm stack (user space)

 Emulated ROCk

 We evaluate the effects on simulation for both HSAIL and GCN3

 We demonstrate that HSAIL introduces significant additional error

Radeon Open Compute Platform (ROCm)

• The open-source implementation of HSA 
principles for AMD Devices

• ROCr – runtime

• ROCt – thunk (user driver)

• ROCk – kernel driver

• HCC – heterogenous compute compiler
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AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

‒ Methodology

‒ Quantitative analysis

‒ Instruction scheduling

‒ Kernel argument access

‒ Control flow

‒ Instruction expansion

 HW runtime correlation and error

 Conclusion
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 gem5’s GPU model

‒ With GCN3 support added

‒ Support for HSA standard and off-the-shelf ROCm

 ROCm version 1.1

‒ HCC-hsail clang compiler version 3.5

‒ Same binary used on hardware/gem5

‒ For HSAIL extract the kernel code from binary before 
finalizing to GCN3

 HW runs on AMD Pro A12-8800B APU

‒ Radeon open compute profiler (RCP) used to 
capture hardware data

METHODOLOGY

Workload Description

Array BW Memory streaming

Bitonic Sort Parallel merge sort

CoMD DOE Molecular-dynamics algorithms

FFT Digital signal processing

HPGMG Ranks HPC systems

LULESH Hydrodynamic simulation

MD Generic molecular-dynamics algorithms

SNAP Discrete ordinates neutral particle transport 
application

SpMV Sparse matrix-vector multiplication

XSBench Monte Carlo particle transport simulation
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GCN3 VIEW OF COMPUTE UNIT PIPELINE

KNOWLEDGE OF UNDERLYING HW RESOURCES

Not utilized by HSAIL instructions
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SIMDs

Scalar 
Unit

Scalar 
RF

Vector 
RF Local 

Memory

Branch 
Unit

s_load s[0]

s_waitcnt(0)
v_add v6, s0, v0

WF is waiting – cannot issue

Ld return

Load returns, WF may resume

Load count = 0Load count = 1Load count = 0
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HSAIL’S VIEW OF COMPUTE UNIT PIPELINE

KNOWLEDGE OF UNDERLYING HW RESOURCES
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 Much better instruction scheduling from 
GCN3 compiler

 Higher reuse distance

‒ Less probability of accesses same 
banks/registers

 Better register allocation

INSTRUCTION SCHEDULING EFFECTS

VRF BANK CONFLICTS
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MEMORY SEGMENTS

KERNEL ARGUMENT ACCESS

HSAIL

# load kernarg 0 ptr

ld_kernarg $d0, [%__arg_p1]

# load kernarg 0

ld_global $d1, [$d0]

GCN3

# s[6:7] = Kernarg ptr

s_load_dword s[0:1], s[6:7], 0x08

• HSAIL ld specifies segment + arg num offset only

• GCN3 s_load_dword uses real address + byte offset 

• ABI specifies Kernarg pointer stored in s[6:7]

Real ABI state in RFSimulator-maintained WF State

Private Addr

Kernarg Addr

…

WF ID

Work-item ID

…

s[0:3] = Private mem ptr

s[6:7] = Kernarg Ptr

…

v[0] = Work-item ID

…

kernFunc(arg0, arg1, …)

arg0Kernargs buffer

Memory

…

…

arg1
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 Many VRF R/W are redundant

‒ Typically GCN3 codes experience more 
value uniqueness

‒ ABI abstraction in HSAIL hides some 
value redundancy

‒ Base address storage

SCALAR UNIT DOES NOT IMPROVE VALUE UNIQUENESS

VRF VALUE UNIQUENESS

Uniqueness definition: ratio of 
unique lane values to active lanes.
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SIMT VS. VECTOR EXECUTION MODEL

CONTROL FLOW DIVERGENCE

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}

Execute taken path 
first & flush IB

Fall through to BB3

Instruction buffer
cmp

st
cbr

br

cmp

st
cbr

ret

st

br

ret

ret

Reconvergence point reached, HW 
initiated jump to divergent path

Branch over 
BB2 & BB3, 
flush IB

HSAIL
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SIMT VS. VECTOR EXECUTION MODEL

CONTROL FLOW DIVERGENCE

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Instruction buffer

cmp_le vcc, 32, v0

s_load s[0:1], s[6:7], 0x0

s_and_saveexec s[2:3], vcc

v_mov v0, 0x00000054

s_cbranch_execz @BB2

s_endpgm

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_andn2 exec, s[2:3], exec

s_cbranch_execz @BB5

v_cmp_ge vcc, 15, v0

s_and_saveexec s[4:5], vcc

v_mov v0, 0x0000005a

s_cbranch_execz @BB5

BB0

BB1

BB2

BB3

BB4

BB5

Branches are optimizations for
case when EXEC = 0 for a BB

cmp
s_load

s_and_saveexec
v_mov

HSAIL

GCN3
Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}
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 GCN3 relies on predication more 
frequently

‒ Requires fewer hardware “jumps”

‒ Requires fewer IB flushes

SIMT VS. VECTOR EXECUTION MODEL

INSTRUCTION BUFFER FLUSHES
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CODE EXPANSION

# Perform divide

div $d17, $d11, $d1

# Scale D

v_div_scale v[3:4], vcc, v[1:2], v[1:2], s[4:5]

v_mov v[5:6], s[4:5]

# Scale N

v_div_scale v[5:6], vcc, v[5:6], v[1:2], v[5:6]

# 1/D

v_rcp v[7:8], v[3:4]

# Calculate Q and E

v_fma v[9:10], -v[3:4], v[7:8], 1.0

v_fma v[7:8], v[7:8], v[9:10], v[7:8]

v_fma v[9:10], -v[3:4], v[7:8], 1.0

v_fma v[7:8], v[7:8], v[9:10], v[7:8]

v_mul v[9:10], v[5:6], v[7:8]

v_fma v[3:4], -v[3:4], v[9:10], v[5:6]

# Calculate final Q

v_div_fmas v[3:4], v[3:4], v[7:8], v[9:10]

# Fixup Q

v_div_fixup v[1:2], v[3:4], v[1:2], s[4:5]

HSAIL GCN3

HSAIL instructions are semantically powerful

 Single HSAIL inst => several GCN3 insts

Imperative: how to perform operation
(Newton-Raphson Method)

Declarative: what operation to perform
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 GCN3 executes far more 
dynamic instructions

‒ Code expansion

‒ Extra instructions due to ABI

‒ Dependency handling instructions

‒ Intermixed scalar instructions

‒ Varies across applications

INSTRUCTION MIX
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AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

 HW runtime correlation and error

 Conclusion
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 HSAIL adds significant, and unpredictable error

‒ Inherent to using HSAIL and emulated runtime

‒ With only publicly available information, GCN3 still improves error by > 30%

 Results correlate well

‒ May indicate preservation of performance trends

‒ Microarchitectural events, and absolute performance still left with significant error

PERFORMANCE ERROR

HW CORRELATION

Correlation Mean Abs. Error

HSAIL GCN3 HSAIL GCN3

0.972 0.973 75% 42%
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 GPU Compute workloads are becoming more complex

‒ Utilize many components of the system simultaneously

‒ Lots of complex HW/SW interactions

 Modeling the full stack correctly is important

‒ Challenging, as HW changes frequently

‒ Abstracting at OS only provides nice balance

 Machine ISA instructions accurately capture application behavior

‒ Microarchitecture characteristics skewed by IL

‒ Machine ISA captures real HW events/state

 GPU simulators must capture full-system behavior and machine ISA/microarchitecture interaction

CONCLUSION



24 |   LOST IN ABSTRACTION   |   FEBRUARY 27, 2018   |   AMD RESEARCH

 Public release of GCN3 ISA and ROCm support coming soon

 ISCA 2018 tutorial

‒ Will cover:

‒ Model updates

‒ ROCm simulation in detail

‒ Toolchain and benchmarks
‒ *HSAIL has been deprecated

‒ Toolchain uses LLVM IL and compilers directly produces ISA binary

MODEL ENHANCEMENTS AND PUBLIC RELEASE

INTERESTED IN LEARNING MORE?
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