
LOST IN ABSTRACTION: PITFALLS OF ANALYZING
GPUS AT THE INTERMEDIATE LANGUAGE LEVEL

TONY GUTIERREZ, BRADFORD M. BECKMANN, ALEXANDRU DUTU, JOSEPH GROSS,
JOHN KALAMATIANOS, ONUR KAYIRAN, MICHAEL LEBEANE, MATTHEW POREMBA,

BRANDON POTTER, SOORAJ PUTHOOR, MATTHEW D. SINCLAIR, MARK WYSE,
JIEMING YIN, XIANWEI ZHANG, AKSHAY JAIN†, TIMOTHY G. ROGERS†

AMD RESEARCH, †PURDUE UNIVERSITY

2 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

EXECUTIVE SUMMARY

 Intermediate Language (IL)

‒ ISA for virtual machine

‒ Represents data parallel execution well

‒ Primarily designed for compiler
optimizers

 Lots of details abstracted

‒ GPU pipeline is SW managed

‒ Machine ISA manages lots state for
various HW/SW interfaces

HIGH-LEVEL DIFFERENCES: IL VS. MACHINE ISA

0.0

0.5

1.0

1.5

2.0

2.5

In
st

 C
o

u
n

t

In
st

 F
o

o
tp

ri
n

t

G
P

U
 C

yc
le

s

V
R

F
B

an
k

C
o

n
fl

ic
ts

V
al

u
e

 U
n

iq
u

e
n

e
ss

IB
 F

lu
sh

e
s

SI
M

D
 U

ti
liz

at
io

n

D
at

a
Fo

o
tp

ri
n

t

Disimilar Similar
A

ve
ra

ge
 N

o
rm

al
iz

e
d

 t
o

 H
SA

IL

HSAIL GCN3

3 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

 HW runtime correlation and error

 Conclusion

4 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

Application binary interface

• Binary format

• Functional call convention

• Special value location

• System calls

• And more…

CYCLE-LEVEL SIMULATION IS IMPORTANT

 Rapid prototyping of research ideas

 Open-source – inexpensive!

SW ABSTRACTIONS

GPU µArch
model

SW Layer

MEM

GPU Simulator

ISA µArch

IL

Stable Change frequently

Runtime
API

High-level SW

ABI State

OS Driver

5 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

CYCLE-LEVEL SIMULATION IS IMPORTANT
GPUS: OLD VS. NEW VIEW

GPU µArch
model

SW Layer
Kernel launch

MEM

Kernel data

GPU Simulator

20% speed up

Old View: GPU is an accelerator for offloading
data parallel functions from the CPU.

New View: GPU as primary HPC and
datacenter compute device. CPU used for I/O,

system services, etc.

We must understand how to properly model the
HW/SW interfaces in light of this new view.

6 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

GPU IS A HW/SW CO-DESIGNED MACHINE

HIGH-LEVEL SOFTWARE INTERACTIONS

HLC Finalizer

MEM

CU

Application
source

x86 ELF

IL Binary

GPU ISA
Binary

Runtime

HLC
Libraries

Drivers

Command
Processor

Hardware

GPU

High level compiler (HLC) generates IL from
source

Finalizer or JIT generates machine ISA from IL,
instruction schedules are HW dependent

Runtime API used to trigger dispatch

GPU command processor (CP)
aids in implementing API call

1) Two-phase compilation flow

2) Rich runtime layer

3) Co-designed HW tightly coupled to runtime

Runtime/driver allocate and manage GPU HW per processAs GPU SW stack becomes more complex,
emulation becomes more difficult

4) CP + binary + runtime implement ABI

Kernel driver is much easier to maintain – only
need ioctl()

By coupling simulation infrastructure to OS layer only,
we have the flexibility to easily support other
programming models.

7 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

OVERVIEW OF SOFTWARE ABSTRACTIONS IN STATE-OF-THE ART SIMULATORS

GPU SIMULATORS

Runtime Support ISA ABI Support

GPGPU-Sim Emulated IL Simplified by simulator

Multi2Sim Emulated IL/Machine ISA Simplified by simulator

gem5 Emulated IL Simplified by simulator

8 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

OVERVIEW OF SOFTWARE ABSTRACTIONS IN STATE-OF-THE ART SIMULATORS

GPU SIMULATORS

Runtime Support ISA ABI Support

GPGPU-Sim Emulated IL Simplified by simulator

Multi2Sim Emulated IL/Machine ISA Simplified by simulator

gem5 Off-the-shelf Machine ISA Models real ABI

 This work adds

 GCN3 support – AMD’s GPU machine ISA

 HSA ABI

 Support for off-the-shelf ROCm stack (user space)

 Emulated ROCk

 We evaluate the effects on simulation for both HSAIL and GCN3

 We demonstrate that HSAIL introduces significant additional error

Radeon Open Compute Platform (ROCm)

• The open-source implementation of HSA
principles for AMD Devices

• ROCr – runtime

• ROCt – thunk (user driver)

• ROCk – kernel driver

• HCC – heterogenous compute compiler

9 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

‒ Methodology

‒ Quantitative analysis

‒ Instruction scheduling

‒ Kernel argument access

‒ Control flow

‒ Instruction expansion

 HW runtime correlation and error

 Conclusion

10 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 gem5’s GPU model

‒ With GCN3 support added

‒ Support for HSA standard and off-the-shelf ROCm

 ROCm version 1.1

‒ HCC-hsail clang compiler version 3.5

‒ Same binary used on hardware/gem5

‒ For HSAIL extract the kernel code from binary before
finalizing to GCN3

 HW runs on AMD Pro A12-8800B APU

‒ Radeon open compute profiler (RCP) used to
capture hardware data

METHODOLOGY

Workload Description

Array BW Memory streaming

Bitonic Sort Parallel merge sort

CoMD DOE Molecular-dynamics algorithms

FFT Digital signal processing

HPGMG Ranks HPC systems

LULESH Hydrodynamic simulation

MD Generic molecular-dynamics algorithms

SNAP Discrete ordinates neutral particle transport
application

SpMV Sparse matrix-vector multiplication

XSBench Monte Carlo particle transport simulation

11 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

GCN3 VIEW OF COMPUTE UNIT PIPELINE

KNOWLEDGE OF UNDERLYING HW RESOURCES

Not utilized by HSAIL instructions

In
st

ru
ct

io
n

 F
et

ch

D
ep

e
n

d
en

ce
 L

o
gi

c

W
av

ef
ro

n
t

C
o

n
te

xt

Sc
h

ed
u

le
r

Execute

Compute Unit

Scalar Mem

Vector Mem

VALU VALU VALU VALU

SIMDs

Scalar
Unit

Scalar
RF

Vector
RF Local

Memory

Branch
Unit

s_load s[0]

s_waitcnt(0)
v_add v6, s0, v0

WF is waiting – cannot issue

Ld return

Load returns, WF may resume

Load count = 0Load count = 1Load count = 0

12 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

HSAIL’S VIEW OF COMPUTE UNIT PIPELINE

KNOWLEDGE OF UNDERLYING HW RESOURCES

In
st

ru
ct

io
n

 F
et

ch

D
ep

e
n

d
en

ce
 L

o
gi

c

W
av

ef
ro

n
t

C
o

n
te

xt

Sc
h

ed
u

le
r

Execute

Compute Unit

Vector Mem

VALU VALU VALU VALU

SIMDs

Vector
RF Local

Memory

Branch
Unit

ld $v0, [%__arg_p1]

add $v2, $v0, $v1

$V0 Busy

VGPR State

13 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 Much better instruction scheduling from
GCN3 compiler

 Higher reuse distance

‒ Less probability of accesses same
banks/registers

 Better register allocation

INSTRUCTION SCHEDULING EFFECTS

VRF BANK CONFLICTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 V

R
F

B
an

k
C

o
n

fl
ic

ts

HSAIL GCN3

14 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

MEMORY SEGMENTS

KERNEL ARGUMENT ACCESS

HSAIL

load kernarg 0 ptr

ld_kernarg $d0, [%__arg_p1]

load kernarg 0

ld_global $d1, [$d0]

GCN3

s[6:7] = Kernarg ptr

s_load_dword s[0:1], s[6:7], 0x08

• HSAIL ld specifies segment + arg num offset only

• GCN3 s_load_dword uses real address + byte offset

• ABI specifies Kernarg pointer stored in s[6:7]

Real ABI state in RFSimulator-maintained WF State

Private Addr

Kernarg Addr

…

WF ID

Work-item ID

…

s[0:3] = Private mem ptr

s[6:7] = Kernarg Ptr

…

v[0] = Work-item ID

…

kernFunc(arg0, arg1, …)

arg0Kernargs buffer

Memory

…

…

arg1

15 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 Many VRF R/W are redundant

‒ Typically GCN3 codes experience more
value uniqueness

‒ ABI abstraction in HSAIL hides some
value redundancy

‒ Base address storage

SCALAR UNIT DOES NOT IMPROVE VALUE UNIQUENESS

VRF VALUE UNIQUENESS

Uniqueness definition: ratio of
unique lane values to active lanes.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

%
 U

n
iq

u
e

 V
R

F
A

cc
e

ss
e

s

HSAIL GCN3

Lane Lane LaneLane EXEC = 1110

2 2 6 X

%Unique = 66%

16 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

SIMT VS. VECTOR EXECUTION MODEL

CONTROL FLOW DIVERGENCE

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}

Execute taken path
first & flush IB

Fall through to BB3

Instruction buffer
cmp

st
cbr

br

cmp

st
cbr

ret

st

br

ret

ret

Reconvergence point reached, HW
initiated jump to divergent path

Branch over
BB2 & BB3,
flush IB

HSAIL

17 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

SIMT VS. VECTOR EXECUTION MODEL

CONTROL FLOW DIVERGENCE

cmp_lt $c0, $s0, 32

cbr $c0, @BB2

ret

cmp_gt $c0, $s0, 15

cbr $c0, @BB4

st 84, [$d0]

br @BB4

st 90, $[d0]

BB0

BB1

BB3

BB2

BB4

Instruction buffer

cmp_le vcc, 32, v0

s_load s[0:1], s[6:7], 0x0

s_and_saveexec s[2:3], vcc

v_mov v0, 0x00000054

s_cbranch_execz @BB2

s_endpgm

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_waitcnt lgkmcnt(0)

v_mov v[1:2], s[0:1]

flat_store v[1:2], v0

s_andn2 exec, s[2:3], exec

s_cbranch_execz @BB5

v_cmp_ge vcc, 15, v0

s_and_saveexec s[4:5], vcc

v_mov v0, 0x0000005a

s_cbranch_execz @BB5

BB0

BB1

BB2

BB3

BB4

BB5

Branches are optimizations for
case when EXEC = 0 for a BB

cmp
s_load

s_and_saveexec
v_mov

HSAIL

GCN3
Source code:

if (i > 31) {

*x = 84;

} else if (i < 16) {

*x = 90;

}

18 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 GCN3 relies on predication more
frequently

‒ Requires fewer hardware “jumps”

‒ Requires fewer IB flushes

SIMT VS. VECTOR EXECUTION MODEL

INSTRUCTION BUFFER FLUSHES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
e

d
 IB

 F
lu

sh
e

s

HSAIL GCN3

19 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

CODE EXPANSION

Perform divide

div $d17, $d11, $d1

Scale D

v_div_scale v[3:4], vcc, v[1:2], v[1:2], s[4:5]

v_mov v[5:6], s[4:5]

Scale N

v_div_scale v[5:6], vcc, v[5:6], v[1:2], v[5:6]

1/D

v_rcp v[7:8], v[3:4]

Calculate Q and E

v_fma v[9:10], -v[3:4], v[7:8], 1.0

v_fma v[7:8], v[7:8], v[9:10], v[7:8]

v_fma v[9:10], -v[3:4], v[7:8], 1.0

v_fma v[7:8], v[7:8], v[9:10], v[7:8]

v_mul v[9:10], v[5:6], v[7:8]

v_fma v[3:4], -v[3:4], v[9:10], v[5:6]

Calculate final Q

v_div_fmas v[3:4], v[3:4], v[7:8], v[9:10]

Fixup Q

v_div_fixup v[1:2], v[3:4], v[1:2], s[4:5]

HSAIL GCN3

HSAIL instructions are semantically powerful

 Single HSAIL inst => several GCN3 insts

Imperative: how to perform operation
(Newton-Raphson Method)

Declarative: what operation to perform

20 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 GCN3 executes far more
dynamic instructions

‒ Code expansion

‒ Extra instructions due to ABI

‒ Dependency handling instructions

‒ Intermixed scalar instructions

‒ Varies across applications

INSTRUCTION MIX

0

0.5

1

1.5

2

2.5

3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

H
SA

IL

G
C

N
3

array-
bw

bitonic-
sort

comd fft hpgmg lulesh md snapc spmv xsbench

N
o

rm
al

iz
e

d
 D

yn
am

ic
 In

st
ru

ct
io

n
 C

o
u

n
t

VALU SALU LDS VMEM SMEM Waitcnt Branch Misc

21 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

AGENDA

 Executive summary

 Motivation and background

 Pitfalls of analyzing GPUs using IL

 HW runtime correlation and error

 Conclusion

22 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 HSAIL adds significant, and unpredictable error

‒ Inherent to using HSAIL and emulated runtime

‒ With only publicly available information, GCN3 still improves error by > 30%

 Results correlate well

‒ May indicate preservation of performance trends

‒ Microarchitectural events, and absolute performance still left with significant error

PERFORMANCE ERROR

HW CORRELATION

Correlation Mean Abs. Error

HSAIL GCN3 HSAIL GCN3

0.972 0.973 75% 42%

23 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 GPU Compute workloads are becoming more complex

‒ Utilize many components of the system simultaneously

‒ Lots of complex HW/SW interactions

 Modeling the full stack correctly is important

‒ Challenging, as HW changes frequently

‒ Abstracting at OS only provides nice balance

 Machine ISA instructions accurately capture application behavior

‒ Microarchitecture characteristics skewed by IL

‒ Machine ISA captures real HW events/state

 GPU simulators must capture full-system behavior and machine ISA/microarchitecture interaction

CONCLUSION

24 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

 Public release of GCN3 ISA and ROCm support coming soon

 ISCA 2018 tutorial

‒ Will cover:

‒ Model updates

‒ ROCm simulation in detail

‒ Toolchain and benchmarks
‒ *HSAIL has been deprecated

‒ Toolchain uses LLVM IL and compilers directly produces ISA binary

MODEL ENHANCEMENTS AND PUBLIC RELEASE

INTERESTED IN LEARNING MORE?

25 | LOST IN ABSTRACTION | FEBRUARY 27, 2018 | AMD RESEARCH

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the
right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple Inc. used by permission by Khronos. Linux is a
registered trademark of Linus Torvalds. Other names are for informational purposes only and may be trademarks of their respective owners.

