
ComP-Net

Command Processor Networking for Efficient
Intra-kernel Communications on GPUs

1

Michael LeBeane1,2, Khaled Hamidouche1, Brad Benton1, Mauricio Breternitz3, Steven K. Reinhardt4,

Lizy K. John2

1 Advanced Micro Devices Inc., 2 The University of Texas at Austin, 3 INSEC-ID Lisboa, 4 Microsoft Corporation,

Presented by Sooraj Puthoor1

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20182

GPUS AND NETWORKS IN THE WILD

• GPUs are everywhere in HPC, machine learning, and beyond
• Excellent performance/watt for many classes of data-parallel computation

• Many GPUs are required to solve the biggest computational problems
• Can only fit so many GPUs in a single node!

• GPUs talk to each other through Network Interface Controllers (NICs)

• Path between GPU and NIC must be efficient

• Vendors are selling machines filled with many GPUs and NICs
• Inventec Project 47 Node

• 4 Radeon Instinct GPUs
• 2 Mellanox 100G NICs
• 1 EPYC 7601 32-Core CPU
• 2:1 GPU/NIC Ratio

Introduction

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20183

OVERVIEW OF GPU NETWORKING

• Much industry and academic work in the area

• Can largely be broken down into two domains:

• Data Path
• i.e., where the data that goes across the

network flows

• Control Path
• i.e., who tells the NIC to move the data across

the network

Introduction

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20184

DATA PATH OPTIMIZATIONS

• Direct path from discrete GPU memory to NIC
• No bounce buffers or host memory copies

• Implemented in Mellanox’s PeerDirect interface for their NICs

• Used by AMD’s ROCn RDMA[1] and Nvidia’s GPUDirect RDMA[2]

Introduction

Initiator Target

CPU

CacheMemory

NIC Memory

Network

IOC
CPU

Cache Memory

NICMemory

GPUIOC GPU

Memory Memory

[1] AMD. 2017. ROCn RDMA. https://github.com/RadeonOpenCompute/ROCnRDMA
[2] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. http://www.mellanox.com/page/products_dyn?product_family=116

https://github.com/RadeonOpenCompute/ROCnRDMA
http://www.mellanox.com/page/products_dyn?product_family=116

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20185

CONTROL PATH OPTIMIZATIONS
Introduction

a_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

netSend(buf);

netWait();

b_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

Host Driven Networking

1. CPU schedules kernel and waits for completion
2. CPU posts network operation and waits for completion
3. CPU schedules and waits on final kernel

GPU CPU NIC

1

2

3

a_kernel<<<…, stream>>>(buf);

netPost_async(stream, qp, buf);

netWait_async(stream, txcq);

b_kernel<<…, stream>>(buf);

cudaStreamSynchronize(stream);

GPU CPU NIC

GPU Direct Async (GDS)[3]

1. CPU schedules kernel, network operation, and, final kernel
2. GPU triggers initiation of a network operation after kernel
3. GPU launches final kernel

1 2

3

• GDS removes the CPU from the critical path and avoids control flow switches

• Communication events triggered at kernel boundaries

[3] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Offloading communication control logic in GPU accelerated
applications. In Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid). DOI:https://doi.org/10.1109/CCGRID.2017.

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20186

OVERHEAD OF KERNEL BOUNDARY COMMUNICATION

• Kernel launch latencies much
higher than HPC network
overheads!
• Can be up to 20µs for a kernel

launch!

• Compare that to < 1µs it takes to get
to another node over the network

• Obvious Solution: Can you do
networking from within a kernel?
• Absolutely!

• Two main schools of thought here…

Introduction

0

4

8

12

16

20

1 8 64 512

La
u

n
ch

 L
at

en
cy

 (
µ

s)

Kernel Commands Queued

GPU 1

GPU 2

GPU 3

S
m

a
lle

r
is

 B
e

tt
e

r

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20187

GPU NATIVE NETWORKING[4, 5, 6, 7]

• Run a networking stack on the GPU

• Allow the GPU work-items to directly
interact with the network adaptor

• Pros

• Completely decoupled from the CPU

• Can be performant/low-latency

• Cons

• Hard to talk to network interface designed for
CPUs

• Can suffer from significant control flow
divergence and register pressure

Introduction

[4] Lena Oden, Holger Froning, and Franz-Joseph Pfreundt. 2014. Infiniband-Verbs on GPU: A Case Study of Controlling an Infiniband Network Device from
the GPU. In Intl. Conf. on Parallel Distributed Processing Symposium Workshops (IPDPSW). 976–983.
[5] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing Put/Get APIs for Thread-Collaborative Processors. In Intl. Conf. on Parallel Processing
(ICPP) Workshops.
[6] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing communication models for distributed thread-collaborative processors in terms of
energy and time. In Intl. Symp. on Performance Analysis of Systems and Software (ISPASS).
[7] Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUrdma: GPU-side Library for High Performance Networking from GPU Kernels. In Intl.
Workshop on Runtime and Operating Systems for Supercomputers (ROSS). 6:1–6:8.

Launch

Kernel

GPU Native Networking Put

CPU

GPU

NIC

Done

Send

Kernel Boundary Networking

GPU

WaitLaunchSendWaitLaunch

Host-Driven Networking Put

CPU

NIC

Done

Kernel Kernel

Intra-Kernel Networking

Send Launch

GPUDirect Async (GDS) Put

CPU

GPU

NIC

Done

Kernel Kernel

Time

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20188

GPU HOST NETWORKING[8, 9, 10]

• Run your networking stack on the CPU

• Have the GPU place network requests
in a producer/consumer queue for the
CPU

• Use threads on the CPU to process
messages and synchronize with
system atomics

• Pros

• Lots of flexibility on the CPU to improve
performance through coalescing, etc.

• Cons

• Additional latency imposed by the
indirection

• Scales poorly with more or bigger GPUs

Introduction

[8] Jeff A. Stuart and John D. Owens. 2009. Message passing on data-parallel architectures. In Intl. Symp. on Parallel Distributed Processing (IPDPS). 1–12.
[9] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir Wated, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU
Programs. In USENIX Conf. on Operating Systems Design and Implementation (OSDI). 201–216.
[10] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: Hardware Supported Overlap of Computation and Communication. In Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC) (SC ’16). Article 52, 12 pages.

Launch

Kernel

GPU Native Networking Put

CPU

GPU

NIC

Done

Send

Kernel Boundary Networking

GPU

WaitLaunchSendWaitLaunch

Host-Driven Networking Put

CPU

NIC

Done

Kernel Kernel

Intra-Kernel Networking

Send Launch

GPUDirect Async (GDS) Put

CPU

GPU

NIC

Done

Kernel Kernel

Time

00
Kernel

WaitSendWaitLaunch

GPU Host Networking Put

CPU

GPU

NIC

Done

Send

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 20189

PERFORMANCE PROBLEMS WITH GPU HOST NETWORKING

• Need multiple trips over IO bus

• Where to place queues?
• GPU memory vs. host memory

• High latency in both cases

• Not scalable
• 40µs latency with 8 threads

• Bigger/more GPUs reduce scalability

Introduction

0

20

40

60

80

100

1 8 64 512 4096

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

Host Queues

GPU Queues

Network Latency

0

20

40

60

80

100

16 128 1024

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

1 Thread

2 Threads

4 Threads

8 Threads

Network Latency

Sm
al

le
r

is
 B

et
te

r

4096

Time

00
Kernel

WaitSendWaitLaunch

GPU Host Networking Put

CPU

GPU

NIC

Done

Send

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201810

COMMAND PROCESSOR NETWORKING (COMP-NET) OVERVIEW

• Uses built-in CP to support network
operations

• CP/GPU communicate over shared
L2 cache instead of PCIe

• Potentially much faster (lower
latency) than other GPU Host
Networking designs

• CP resources can scale with other
GPU resources

ComP-Net

NIC

…
Host Queues

Memory

CUs

CPUs

GPU

Host

PCIe

Memory

…
Network Queues

PCIe

GPU Host

Networking

Host
PCIe

L2 Cache
CP Queues

Memory
Network Queues

CUs CPs

PCIe

NIC
GPU

ComP-Net

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201811

COMMAND PROCESSOR OVERVIEW

• GPUs have built-in CPUs called
Command Processors (CPs)
• Scalar cores == good at running

network runtime code

• Can connect to GPU CUs through a
shared LLC

• Traditionally used to launch
kernels
• But intra-kernel networking encourages

fewer kernels…..

Introduction

Local Data Share

L2 Cache

L1 Cache

CPU Core

GPU Memory

Compute Unit Command
Processor

L1 Cache

SIMD SIMD SIMD SIMD

GPU

Can we leverage CPs for intra-kernel

networking?

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201813

COMP-NET PRODUCER/CONSUMER QUEUE

• Main component of ComP-Net Runtime is CP/GPU producer/consumer queue

• Most steps are straightforward

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201814

COMP-NET PRODUCER/CONSUMER QUEUE

• 1a) Check if queue is full (using local Read Idx)

• 1b) If full, update Read Idx and loop till not full

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

1b

1a
<=

Read Idx Ptr

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201815

COMP-NET PRODUCER/CONSUMER QUEUE

• 2) Fill Queue Entry with networking metadata

• Or Inline small payloads in the Queue Entry itself

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

2

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201816

COMP-NET PRODUCER/CONSUMER QUEUE

• 3) Set Status flag with release marker to notify CP

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

3

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201817

COMP-NET PRODUCER/CONSUMER QUEUE

• 4) Increment local Write Idx

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

4
++

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201818

COMP-NET PRODUCER/CONSUMER QUEUE

• 1) Poll on next Queue Entry based on local Read Idx with acquire marker

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

1

== 0

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201819

COMP-NET PRODUCER/CONSUMER QUEUE

• 2) Read data from Queue Entry

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

2

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201820

COMP-NET PRODUCER/CONSUMER QUEUE

• 3) Perform network operation and set Status flag to 0 when complete with release marker

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 0 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

3

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201821

COMP-NET PRODUCER/CONSUMER QUEUE

• 4a) Update global Read Idx with release marker

• 4b) Update local Read Idx

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 0 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

4b

++

4a++

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201822

COMP-NET PRODUCER/CONSUMER QUEUE

• 5) Check Status bit to determine when CP completes operation

ComP-Net

Registers /
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers /
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

5
== 1

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201823

TACKLING GPU CACHE THRASHING

• Residency of data in GPU L2 cache is
very short

• Work-group data produced for CP is
evicted when other work-groups
perform streaming memory accesses

• Can be solved through cache line
locking
• Preliminary results are promising

• Still much to explore here

ComP-Net

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40/0 35/5 30/10 25/15 20/20 15/25 10/30 5/35

L2
 H

it
 R

at
e

fo
r

C
P

Networking Wavefronts / Streaming Wavefronts

Baseline LLC Locking

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201824

SIMULATION ENVIRONMENT

• gem5 [11] + AMD GCN3 GPU model [12] + Internal Portals4 NIC model

• CPU power model with McPAT [13]

• Baseline model is coherent APU
• dGPU modeled with extra delay for I/O bus and by disabling coherence probes

Results

Directory
Memory

Controllers
Memory

GPU CPU

Core

L2

L1IL1D …

Core

L2

L1IL1D

Core

L2

L1IL1D

L3

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

Sequencer Cache (SQC)

L2

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

GPU
Core

L1D

Sequencer Cache (SQC)

…

NIC

NIC Processors

DMA Engines

L1IL1D

CP
Core

IFNetwork

[11] N. Binkert, et. al. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 2001.

[12] A. Gutierrez et al., "Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language Level," HPCA 2018.

[13] S. Li. et. al. , "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures," MICRO 2009

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201825

SIMULATOR CONFIGURATION

• CPU: Standard CPU-only systems

• Baseline non-accelerated system

• HDN: Host Driven Networking

• Kernel boundary networking (host MPI + HIP)

Intra-kernel Networking Schemes:

• APU: CPU/GPU on the same die

• Intra-kernel networking through host threads on an APU

• dGPU: GPU Host Networking

• Intra-kernel networking on a dGPU via host threads

• ComP-Net: Command Processor Networking

• Intra-kernel networking through command processor

Results
CPU and Memory Configuration

Type 8-wide OOO, x86, 8 cores @ 4GHz

I,D-Cache 64KB, 2-way, 2 cycles

L2-Cache 2MB, 8-way, 8 cycles

L3-Cache 16MB, 16-way, 20 cycles

DRAM DDR4, 8 Channels, 2133MHz

GPU Configuration

Type AMD GCN3 @ 1.5GHz

CU Config 12 CUs with 4 SIMD-16 engines

Wavefronts 40 Waves per SIMD (64 lanes)

V-Cache 32KB, 16-way, 12 cycles, per CU

K-Cache 32KB, 8-way, 12 cycles, per 4 CU

I-Cache 64KB, 8-way, 12 cycles, per 4 CU

L2-Cache 1MB, 16-way, 8 banks, 100 cycles

CP Configuration

Type 2-wide OOO, x86, 2 cores @ 2GHz

D-Cache 32KB, 8-way, 4 cycles

I-Cache 16KB, 8-way, 4 cycles

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201826

MICROBENCHMARKS

• Sweep of message size
(single networking WG)

• Round trip network
latency

Results

1

2

4

8

16

32

64

128

R
em

o
te

 G
et

 T
im

e

O
b
se

rv
ed

 f
ro

m
 G

P
U

 (
µ

s)

Network Payload Size (Bytes)

ComP-Net dGPU APU

1B 32B 1KB 32KB 1MB
0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

R
em

o
te

 G
et

 T
im

e

O
b

se
rv

ed
 f

ro
m

 G
P

U
 (

µ
s)

Number of Network Service Threads

ComP-Net dGPU APU

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

E
n
er

g
y
 C

o
n

su
m

ed
 b

y
 N

et
w

o
rk

 T
h
re

ad
s

Number of Network Service Threads

ComP-Net dGPU APU

• Sweep of number of
network service threads
(many networking WGs)

• Round trip network latency

• Sweep of number of
network service threads
(many networking WGs)

• Energy consumption of
CP/CPU threads

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201827

2D JACOBI STENCIL

• 1D data decomposition

• Iterative computation and halo exchange

• Allreduce for residual calculation

Results

Node 1 (Bottom)

Node 0 (Top)

Halo

Exchange

0.8

0.9

1

1.1

1.2

1.3

16 64 256 1024

R
el

at
iv

e
S

p
ee

d
u

p
 v

 d
G

P
U

B
as

el
in

e

Per-node Problem Size (N x N Grid)

ComP-Net dGPU APU HDN CPU

B
ig

ge
r

is
 B

et
te

r

1 2 3

• Three regions of interest
1. CPU is best

2. Intra-kernel networking is best

3. Any GPU solution is acceptable

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201828

REDUCTION

• 64MB strong scaling study
• Fix problem size, sweep node count

• APU performs better than ComP-Net

• ComP-Net is much more energy efficient

Results

0 1 25 2 1 1 3 5

0 9 8

Vector Sum
0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24 28 32 36

R
el

at
iv

e
S

p
ee

d
u

p

Number of Nodes in Reduction

ComP-Net dGPU APU HDN CPU

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32 36E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

Number of Nodes in Reduction

ComP-Net dGPU APU

B
ig

ge
r

is
 B

et
te

r
Sm

al
le

r
is

 B
et

te
r

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201829

DEEP LEARNING TRAINING

• Use Microsoft’s Cognitive Toolkit and sample
workloads

• Projected using simulation results + profiling
data from TACC’s Stampede supercomputer

• Speedups bound by % time application blocked
on network data

Results

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

AlexNet AN4

LSTM

CIFAR MNIST

Conv

MNIST

Hidden

Average

P
ro

je
ct

ed
 S

p
ee

d
u

p

CPU HDN dGPU APU ComP-Net

B
ig

ge
r

is
 B

et
te

r

Workload Name Domain %Blocked Reductions

Alex Net Classification 14% 4672

AN4 LSTM Speech 50% 131192

CIFAR Classification 4% 939820

Large Synth Synthetic 28% 52800

MNIST Conv Text Recognition 12% 900000

MNIST Hidden Text Recognition 29% 900000

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201830

SUMMARY
Conclusion

• Uses built-in CP to support
network operations

• CP/GPU communicate over
shared L2 cache instead of PCIe

• CP resources can scale with other
GPU resources

• Up to 15% performance improvement
and 2x energy reduction vs. GPU
Host Networking

NIC

…
Host Queues

Memory

CUs

CPUs

GPU

Host

PCIe

Memory

…
Network Queues

PCIe

GPU Host

Networking

Host
PCIe

L2 Cache
Host Queues

Memory
Network Queues

CUs CPs

PCIe

NIC
GPU

ComP-Net

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201831

Thank You!

Sooraj.Puthoor@amd.com

Michael.LeBeane@amd.com

Questions?

mailto:Sooraj.Puthoor@amd.com
mailto:Michael.LeBeane@amd.com

| PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) | November 01-04, 201832

Disclaimer

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including
but not limited to product and roadmap changes, component and motherboard version changes, new model and/or
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware
upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However,
AMD reserves the right to revise this information and to make changes from time to time to the content hereof without
obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN
THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT,
SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION
CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for
informational purposes only and may be trademarks of their respective owners.

The work described in this presentation was made with Government support awarded by the DOE. The
Government may have certain rights in this work.

