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GPUS AND NETWORKS IN THE WILD

• GPUs are everywhere in HPC, machine learning, and beyond
• Excellent performance/watt for many classes of data-parallel computation

• Many GPUs are required to solve the biggest computational problems
• Can only fit so many GPUs in a single node!

• GPUs talk to each other through Network Interface Controllers (NICs)

• Path between GPU and NIC must be efficient

• Vendors are selling machines filled with many GPUs and NICs
• Inventec Project 47 Node

• 4 Radeon Instinct GPUs
• 2 Mellanox 100G NICs
• 1 EPYC 7601 32-Core CPU
• 2:1 GPU/NIC Ratio

Introduction
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OVERVIEW OF GPU NETWORKING

• Much industry and academic work in the area

• Can largely be broken down into two domains:

• Data Path
• i.e., where the data that goes across the 

network flows

• Control Path
• i.e., who tells the NIC to move the data across 

the network

Introduction
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DATA PATH OPTIMIZATIONS

• Direct path from discrete GPU memory to NIC
• No bounce buffers or host memory copies

• Implemented in Mellanox’s PeerDirect interface for their NICs

• Used by AMD’s ROCn RDMA[1] and Nvidia’s GPUDirect RDMA[2]

Introduction
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[1] AMD. 2017. ROCn RDMA. https://github.com/RadeonOpenCompute/ROCnRDMA
[2] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. http://www.mellanox.com/page/products_dyn?product_family=116

https://github.com/RadeonOpenCompute/ROCnRDMA
http://www.mellanox.com/page/products_dyn?product_family=116
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CONTROL PATH OPTIMIZATIONS
Introduction

a_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

netSend(buf);

netWait();

b_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

Host Driven Networking

1. CPU schedules kernel and waits for completion
2. CPU posts network operation and waits for completion
3. CPU schedules  and waits on final kernel

GPU CPU NIC

1

2

3

a_kernel<<<…, stream>>>(buf);

netPost_async(stream, qp, buf);

netWait_async(stream, txcq);

b_kernel<<…, stream>>(buf);

cudaStreamSynchronize(stream);

GPU CPU NIC

GPU Direct Async (GDS)[3]

1. CPU schedules kernel, network operation, and, final kernel
2. GPU triggers initiation of a network operation after kernel
3. GPU launches final kernel

1 2

3

• GDS removes the CPU from the critical path and avoids control flow switches

• Communication events triggered at kernel boundaries

[3] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Offloading communication control logic in GPU accelerated 
applications. In Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid). DOI:https://doi.org/10.1109/CCGRID.2017.
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OVERHEAD OF KERNEL BOUNDARY COMMUNICATION

• Kernel launch latencies much 
higher than HPC network 
overheads!
• Can be up to 20µs for a kernel 

launch!

• Compare that to < 1µs it takes to get 
to another node over the network

• Obvious Solution: Can you do 
networking from within a kernel?
• Absolutely!

• Two main schools of thought here…

Introduction
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GPU NATIVE NETWORKING[4, 5, 6, 7]

• Run a networking stack on the GPU

• Allow the GPU work-items to directly 
interact with the network adaptor

• Pros

• Completely decoupled from the CPU

• Can be performant/low-latency

• Cons

• Hard to talk to network interface designed for 
CPUs

• Can suffer from significant control flow 
divergence and register pressure

Introduction

[4] Lena Oden, Holger Froning, and Franz-Joseph Pfreundt. 2014. Infiniband-Verbs on GPU: A Case Study of Controlling an Infiniband Network Device from 
the GPU. In Intl. Conf. on Parallel Distributed Processing Symposium Workshops (IPDPSW). 976–983. 
[5] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing Put/Get APIs for Thread-Collaborative Processors. In Intl. Conf. on Parallel Processing 
(ICPP) Workshops. 
[6] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing communication models for distributed thread-collaborative processors in terms of 
energy and time. In Intl. Symp. on Performance Analysis of Systems and Software (ISPASS).
[7] Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUrdma: GPU-side Library for High Performance Networking from GPU Kernels. In Intl. 
Workshop on Runtime and Operating Systems for Supercomputers (ROSS). 6:1–6:8. 
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GPU HOST NETWORKING[8, 9, 10]

• Run your networking stack on the CPU

• Have the GPU place network requests 
in a producer/consumer queue for the 
CPU

• Use threads on the CPU to process 
messages and synchronize with 
system atomics

• Pros

• Lots of flexibility on the CPU to improve 
performance through coalescing, etc.

• Cons

• Additional latency imposed by the 
indirection

• Scales poorly with more or bigger GPUs

Introduction

[8] Jeff A. Stuart and John D. Owens. 2009. Message passing on data-parallel architectures. In Intl. Symp. on Parallel Distributed Processing (IPDPS). 1–12. 
[9] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir Wated, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU 
Programs. In USENIX Conf. on Operating Systems Design and Implementation (OSDI). 201–216. 
[10] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: Hardware Supported Overlap of Computation and Communication. In Intl. Conf. for High 
Performance Computing, Networking, Storage and Analysis (SC) (SC ’16). Article 52, 12 pages.
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PERFORMANCE PROBLEMS WITH GPU HOST NETWORKING

• Need multiple trips over IO bus

• Where to place queues?
• GPU memory vs. host memory

• High latency in both cases

• Not scalable
• 40µs latency with 8 threads

• Bigger/more GPUs reduce scalability

Introduction
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COMMAND PROCESSOR NETWORKING (COMP-NET) OVERVIEW

• Uses built-in CP to support network 
operations

• CP/GPU communicate over shared 
L2 cache instead of PCIe

• Potentially much faster (lower 
latency) than other GPU Host 
Networking designs

• CP resources can scale with other 
GPU resources

ComP-Net
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COMMAND PROCESSOR OVERVIEW

• GPUs have built-in CPUs called 
Command Processors (CPs)
• Scalar cores == good at running 

network runtime code

• Can connect to GPU CUs through a 
shared LLC

• Traditionally used to launch 
kernels
• But intra-kernel networking encourages 

fewer kernels…..

Introduction

Local Data Share

L2 Cache

L1 Cache

CPU Core

GPU Memory

Compute Unit Command 
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Can we leverage CPs for intra-kernel 

networking?
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COMP-NET PRODUCER/CONSUMER QUEUE

• Main component of ComP-Net Runtime is CP/GPU producer/consumer queue

• Most steps are straightforward

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread



|   PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) |  November 01-04, 201814

COMP-NET PRODUCER/CONSUMER QUEUE

• 1a) Check if queue is full (using local Read Idx)

• 1b) If full, update Read Idx and loop till not full

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

1b

1a
<=

Read Idx Ptr
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COMP-NET PRODUCER/CONSUMER QUEUE

• 2) Fill Queue Entry with networking metadata 

• Or Inline small payloads in the Queue Entry itself

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

2
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COMP-NET PRODUCER/CONSUMER QUEUE

• 3) Set Status flag with release marker to notify CP

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

3



|   PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT) |  November 01-04, 201817

COMP-NET PRODUCER/CONSUMER QUEUE

• 4) Increment local Write Idx

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

4
++
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COMP-NET PRODUCER/CONSUMER QUEUE

• 1) Poll on next Queue Entry based on local Read Idx with acquire marker

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

1

== 0
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COMP-NET PRODUCER/CONSUMER QUEUE

• 2) Read data from Queue Entry

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

2
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COMP-NET PRODUCER/CONSUMER QUEUE

• 3) Perform network operation and set Status flag to 0 when complete with release marker

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 0 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

3
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COMP-NET PRODUCER/CONSUMER QUEUE

• 4a) Update global Read Idx with release marker

• 4b) Update local Read Idx

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 0 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

4b

++

4a++
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COMP-NET PRODUCER/CONSUMER QUEUE

• 5) Check Status bit to determine when CP completes operation

ComP-Net

Registers / 
Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

1 1 1 0

CP-Net GPU Context
Base Ptr

Local Read Idx
…..

Registers / 
Non Coherent Cache

4 CP-Net GPU Context
Base Ptr

Local Read Idx
…..

….

Work-Group Command Processor Thread

5
== 1
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TACKLING GPU CACHE THRASHING

• Residency of data in GPU L2 cache is 
very short

• Work-group data produced for CP is 
evicted when other work-groups 
perform streaming memory accesses

• Can be solved through cache line 
locking
• Preliminary results are promising

• Still much to explore here

ComP-Net
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SIMULATION ENVIRONMENT

• gem5 [11] + AMD GCN3 GPU model [12] + Internal Portals4 NIC model

• CPU power model with McPAT [13]

• Baseline model is coherent APU
• dGPU modeled with extra delay for I/O bus and by disabling coherence probes

Results
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[11] N. Binkert, et. al. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 2001.

[12] A. Gutierrez et al., "Lost in Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language Level," HPCA 2018.

[13] S. Li. et. al. , "McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures," MICRO 2009
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SIMULATOR CONFIGURATION

• CPU: Standard CPU-only systems

• Baseline non-accelerated system

• HDN: Host Driven Networking

• Kernel boundary networking (host MPI + HIP)

Intra-kernel Networking Schemes:

• APU: CPU/GPU on the same die

• Intra-kernel networking through host threads on an APU

• dGPU: GPU Host Networking

• Intra-kernel networking on a dGPU via host threads

• ComP-Net: Command Processor Networking

• Intra-kernel networking through command processor

Results
CPU and Memory Configuration

Type 8-wide OOO, x86, 8 cores @ 4GHz

I,D-Cache 64KB, 2-way, 2 cycles

L2-Cache 2MB, 8-way, 8 cycles

L3-Cache 16MB, 16-way, 20 cycles

DRAM DDR4, 8 Channels, 2133MHz

GPU Configuration

Type AMD GCN3 @ 1.5GHz

CU Config 12 CUs with 4 SIMD-16 engines

Wavefronts 40 Waves per SIMD (64 lanes)

V-Cache 32KB, 16-way, 12 cycles, per CU

K-Cache 32KB, 8-way, 12 cycles, per 4 CU

I-Cache 64KB, 8-way, 12 cycles, per 4 CU

L2-Cache 1MB, 16-way, 8 banks, 100 cycles

CP Configuration

Type 2-wide OOO, x86, 2 cores @ 2GHz

D-Cache 32KB, 8-way, 4 cycles

I-Cache 16KB, 8-way, 4 cycles
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MICROBENCHMARKS

• Sweep of message size 
(single networking WG)

• Round trip network 
latency

Results
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• Sweep of number of 
network service threads 
(many networking WGs)

• Round trip network latency

• Sweep of number of 
network service threads 
(many networking WGs)

• Energy consumption of 
CP/CPU threads
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2D JACOBI STENCIL

• 1D data decomposition

• Iterative computation and halo exchange

• Allreduce for residual calculation

Results
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• Three regions of interest
1. CPU is best

2. Intra-kernel networking is best

3. Any GPU solution is acceptable
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REDUCTION

• 64MB strong scaling study
• Fix problem size, sweep node count

• APU performs better than ComP-Net

• ComP-Net is much more energy efficient

Results
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DEEP LEARNING TRAINING

• Use Microsoft’s Cognitive Toolkit and sample 
workloads

• Projected using simulation results + profiling 
data from TACC’s Stampede supercomputer

• Speedups bound by % time application blocked 
on network data

Results
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Workload Name Domain %Blocked Reductions

Alex Net Classification 14% 4672

AN4 LSTM Speech 50% 131192

CIFAR Classification 4% 939820

Large Synth Synthetic 28% 52800

MNIST Conv Text Recognition 12% 900000

MNIST Hidden Text Recognition 29% 900000
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SUMMARY
Conclusion

• Uses built-in CP to support 
network operations

• CP/GPU communicate over 
shared L2 cache instead of PCIe

• CP resources can scale with other 
GPU resources

• Up to 15% performance improvement 
and 2x energy reduction vs. GPU 
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Thank You!

Sooraj.Puthoor@amd.com

Michael.LeBeane@amd.com

Questions?

mailto:Sooraj.Puthoor@amd.com
mailto:Michael.LeBeane@amd.com
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical 
inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including 
but not limited to product and roadmap changes, component and motherboard version changes, new model and/or 
product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware 
upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, 
AMD reserves the right to revise this information and to make changes from time to time to the content hereof without 
obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND 
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN 
THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY 
PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, 
SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION 
CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are 
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for 
informational purposes only and may be trademarks of their respective owners.

The work described in this presentation was made with Government support awarded by the DOE. The 
Government may have certain rights in this work.


