
GPU Initiated OpenSHMEM:
Correct and Efficient Intra-Kernel

Networking for dGPUs
Khaled Hamidouche and Michael LeBeane

Michael.Lebeane@amd.com

FEBRUARY 26, 2020

mailto:Michael.Lebeane@amd.com

2 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

GPUs and Networks in the Wild

▪ GPUs are everywhere in HPC, Big Data, Machine Learning, and beyond

▸Excellent performance/watt for many classes of data-parallel computation

▪ Many GPUs are required to solve the biggest computational problems

▸Can only fit so many GPUs in a single node

▸GPUs need to talk to each other through Network Interface Controllers (NICs)

▪ Example: Frontier (expected world’s fastest supercomputer in 2021)

▸1.5 Exaflops peak compute performance

▸Per-Node Configuration [1]

▸1 AMD EPYC CPU

▸4 AMD Radeon Instinct GPUs

▸100GB/s Cray Slingshot Network

[1] Frontier Supercomputer. https://www.olcf.ornl.gov/frontier/

https://www.olcf.ornl.gov/frontier/

3 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Data Movement on GPU Clusters

▪ GPU networking can largely be broken down into two pieces

▸Data Path

▸i.e., where the data that goes across the network flows

▸Important to maximize bandwidth

▸Control Path

▸i.e., who tells the NIC to move the data across the network

▸Important to minimize latency

▪ Much industry and academic work

▸Data path has been highly optimized

▸Control path is an open research area

4 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Data Path Optimizations

Initiator Target

CPU

CacheMemory

NIC Memory

Network

IOC
CPU

Cache Memory

NICMemory

GPUIOC
GPU

Memory Memory

▪ Direct path from discrete GPU memory to NIC

▸No bounce buffers/host memory copies

▸Implemented in Mellanox’s PeerDirect interface

▸Used by AMD’s ROCn RDMA and Nvidia’s GPUDirect RDMA

5 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Control Path Optimizations

a_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

netSend(buf);

netWait();

b_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

Host Driven Networking

1. CPU schedules kernel and waits for completion
2. CPU posts network operation and waits for completion
3. CPU schedules and waits on final kernel

GPU CPU NIC

1

2

3

a_kernel<<<…, stream>>>(buf);

netPost_async(stream, qp, buf);

netWait_async(stream, txcq);

b_kernel<<…, stream>>(buf);

cudaStreamSynchronize(stream);

GPU CPU NIC

GPU Direct Async (GDS)

1. CPU schedules kernel, network operation, and final kernel
2. GPU triggers initiation of a network operation after kernel
3. GPU launches final kernel

1 2

3

▪ GDS removes the CPU from the critical path and avoids control flow switches

▪ Still kernel boundary…

6 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Issues with Kernel Boundary Communication

▪ Communications restricted to kernel
boundaries

▪ High overhead of starting/finishing a kernel

▪ Restricts networking to large messages to
amortize overheads

▪ Poor for irregular or frequent communication
patterns 0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256

La
u

n
ch

 L
at

en
cy

 (
µ

s)

Kernel Commands Queued

GPU 1

GPU 2

GPU 3

7 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Introducing GPU Initiated OpenSHMEM (GIO)

▪ GIO enables intra-kernel networking from a GPU through an OpenSHMEM-like interface

▸GPU directly creates InfiniBandTM command packets

▸Removes GPU Stream + MPI programming abstraction

▪ Identifies and solves data visibility issues common to prior intra-kernel networking
approaches

▪ Introduces novel packet templating design to overcome poor performance of network
code on GPU

▪ Provides speedup vs. traditional kernel boundary communication

▸Up to 40% performance optimization for irregular Sparse Triangular Solver

8 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

1 Slide OpenSHMEM Tutorial

▪ OpenSHMEM is a PGAS communications model implemented through a standardized
runtime

▪ Network accessible memory allocated collectively on all nodes

▸Referred to as the “Symmetric Heap”

▪ Remote memory on the Symmetric Heap accessed using Puts() and Gets()

▸Analogous to local Stores and Loads, respectively

▪ Ordering and network completion controlled via Fence() and Quiet() calls

GPU0 NICGPU1 GPU2 GPU3NIC

OpenSHMEM Symmetric Heap

Node 0 Node 1

9 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

1 Slide GPU Tutorial

▪ Single Instruction-Multiple Thread (SIMT) Style

▸Bundles of threads scheduled across multiple SIMD units

▸Good for data parallel code, bad for branchy serial code

▪ Components of interest

▸Work-groups (Threadblocks): Groups of thread bundles on the
same CU can share scratchpad memory and synchronize

▸LDS (Shared Memory): Scratchpad memory used by work-
groups

Local Data Share

L2 Cache

GPU Memory (HBM)

Compute Unit

L1 Cache

SIMD SIMD SIMD SIMD

Unordered DF

10 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

GIO Programming Model

// Initialize GIO Runtime

gio_shmem_handle_t* gio_shmem_handle;

gio_shmem_init(&gio_shmem_handle);

// Allocate symmetric heap memory

int size = sizeof(char) * ELEMENTS;

char* src = gio_shmem_malloc(size);

char* dst = gio_shmem_malloc(size);

//Initiator/target launches kernel

pe = gio_shmem_my_pe(gio_shmem_handle);

if (pe == INITIATOR) {

hipLaunchKernel(Ping, GRID_SZ,

GRID_SZ / WG_SZ, 0, 0,

gio_shmem_handle, src,

dst);

} else {

// Launch pong kernel (not shown)

}

__device__ void

devicePing(gio_shmem_handle_t* gio_shmem_handle,

char* src, char* dst)

{

// Extract context from global handle

__shared__ gio_shmem_ctx_t gio_shmem_ctx;

gio_shmem_ctx_create(gio_shmem_handle,

&gio_shmem_ctx);

// Each WG pings target

gio_shmem_put_nbi(gio_shmem_ctx,

dst[hipBlockIdx_x],

src[hipBlockIdx_x],

sizeof(char), TARGET);

// Wait on the network completion

gio_shmem_quiet(gio_shmem_ctx);

// Each WG waits for pong target

gio_shmem_wait_until(dst[hipBlockIdx_x], 1);

gio_shmem_ctx_destroy(gio_shmem_ctx);

}

Host Code GPU Code

11 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

GIO Runtime Challenges

▪ Data visibility challenges

▸Memory model requires kernel termination for:

▸GPU to see data produced by others

▸Others to see data produced by GPU

▪ Performance challenges

▸GPU very bad at constructing network command packets

▸Long sequence of serial code performed by a single thread

12 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Data Visibility Challenges

Local Data Share

L2 Cache

GPU Memory (HBM)

Compute Unit

L1 Cache

SIMD SIMD SIMD SIMD

Unordered DF

Per Device Write-

Combing Cache

(Non-Coherent)

PCIe Path IP Block (PPB)

PCIe Root Complex

Main Memory (DRAM)

NIC

▪ Problem: L2 Cache is not probed when NIC writes to DRAM / updates can get stuck in L2

▪ Solution: Map NIC accessible pages as uncacheable on allocation

13 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Data Visibility Challenges

Local Data Share

L2 Cache

GPU Memory (HBM)

Compute Unit

L1 Cache

SIMD SIMD SIMD SIMD

Unordered DF

PCIe Path IP Block (PPB)

Per Device Write-Combiner and

Read Cache (Non-Coherent)

PCIe Root Complex

Main Memory (DRAM)

NIC

▪ Problem: PCIe Path IP Block (PPB) cache not updated on GPU writes to HBM

▪ Solution: Memory-map PPB control registers to GPU address space - flush within GPU
runtime as needed

14 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Performance Challenges

▪ Problem: GPU is very poor at writing network packet data

▸Branchy condition checks and serial packing of control information
leads to control flow divergence

▪ Observation: Most of the network packet data is static!

▸lkey, rkey, control, etc.

▸Few pieces of dynamic information (src, dst, size, type)

▪ Solution: CPU creates and posts network templated WQEs

▸CPU runs ahead of GPU and fills in static fields

▸GPU threads only update the dynamic information

▸GPU threads ring the NIC doorbell

15 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Putting it All Together

CPU Side (gio_shmem_init())

1. Create network CQ/SQ resources

2. Create doorbell mapping

3. Create PPB register mappings

4. Create GPU handle and populate
with allocated structs

5. CPU begins templating common
packet fields for GPU

GPU Side (gio_shmem_ctx_create())

6. Store local cache of GIO global
handle into each work-group’s
shared memory

From

CPU

GIO Global Handle

IO Mapped Memory

DB 0
WG Handles

LDS

Memory

NIC Registers

4

1

GPU Registers

GPU Memory (HBM)

SQ CQ

Ctrl: 0x234

Rkey: 0x10

Lkey: 0x12

5
6

DB 0
NIC Doorbells

DB 0
PPB Registers

32

1

2

3

4

5

6

Ready for Networking!

16 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Experimental Setup

▪ Cluster configuration
▸Up to 4 nodes

▸X86 Server Processor

▸AMD RadeonTM MI-25 GPU

▸56Gbps InfiniBandTM Network

▪ Baselines (not all are used in every experiment)

▸CPU: No GPU; communication and computation performed by the CPU

▸Inter-K: GPU performs computation and networking is routed through CPU-centric MPI calls at kernel
boundaries

▸Inter-K-Overlap: Same as Inter-K but GPU kernels overlap with CPU MPI calls when allowed by the
algorithm

▸Intra-Kernel Networking (IKN): Rely on CPU threads to perform network operations on behalf of the GPU

17 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Microbenchmarks

0

5

10

15

20

25

1 2 4 8 16 32 64

L
at

en
cy

 (
µ

s)

Message Size (Bytes)

Inter-K Inter-K-Empty IKN GIO

1

10

100

1000

10000

100000

#2 #4 #8 #16 #32 #64

L
at

en
cy

 (
µ

s)
 L

o
g

 S
ca

le

Number of WGs

4 8 8K 16K 256K 512K

▪ Latency Analysis

▸Small Messages

▸CPU < GIO < IKN < Inter-K-Empty

▸Large Messages

▸Limited by network bandwidth

▸All trends the same

▪ Work-group scaling

▸Network not saturated

▸Latency independent of number of work-groups

▸Network saturated

▸Latency dependent on number of work-groups

▸Work-groups wait on network availability

CPU

18 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Sparse Triangular Solver

▪ Goal: Solve for the vector x in the equation 𝐴𝑥 = 𝑦where the matrix 𝐴 and the vector 𝑦
are inputs

▸Each row solves a single system of equations based on the previous rows’ values

▸Dependencies flow downwards

▸More sparsity -> More independently solvable rows -> More parallelism

19 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Sparse Triangular Solver

0

25

50

75

100

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

ASIC_320ks

GIO IKN0

50

100

150

200

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

WikiTalk

GIO IKN
0

150

300

450

600

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

nlpkkt160

GIO IKN

0

300

600

900

1200

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

road_usa

GIO IKN
0

200

400

600

800

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

road_central

GIO IKN

▪ Strong scaling (same problem size, add more nodes)

▸Compare against IKN only (kernel boundary networking performs poorly here)

▸Performance uplift and scalability very input dependent

▸GIO performs better than IKN in all cases

WikiTalk ASIC_320ks nlpkkt160 road_usa road_central

NNZ 3.072M 1.074M 118.9M 52.80M 31.02M

Rows 2.394M .321M 8.354M 23.95M 14.08M

20 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Summary

▪ GIO enables intra-kernel networking from a GPU through an OpenSHMEM-like interface

▸GPU directly creates InfiniBandTM command packets

▸Removes GPU Stream + MPI programming abstraction

▸Large boost in productivity

▪ Identifies and solves data visibility issues common to prior intra-kernel networking
approaches

▪ Introduces novel packet templating design to overcome poor performance of network
code on GPU

▪ Provides speedup vs. traditional kernel boundary communication

▸Up to 40% performance optimization for irregular Sparse Triangular Solver

▪ Planned open-source release mid-March on ROCm tools GitHub

21 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Thank you!

Michael.Lebeane@amd.com

Questions?

mailto:Michael.Lebeane@amd.com

22 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

© 2020 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, [insert all other AMD trademarks used in the material here per AMD Trademarks] and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but
not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or
revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content
hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF
AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD
SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

23 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Sparse Triangular Solver

0

0.5

1

1.5

2

2.5

3

WikiTalk ASIC_320ks nlpkkt160 road_usa road_central

G
IO

 S
p
ee

d
 U

p
 v

s
IK

N

Input Matrix

2 3 4

3.7

WikiTalk ASIC_320ks nlpkkt160 road_usa road_central

NNZ 3.072M 1.074M 118.9M 52.80M 31.02M

Rows 2.394M .321M 8.354M 23.95M 14.08M

▪ For small matrices (e.g., ASIC_320ks) GIO shows up to 3.7X improvement on 2 nodes and
more than 30% on 4 nodes

▪ For large matrices, (e.g., road_central) we show 38%, 35% and 44% improvement on 2, 3,
and 4 GPU nodes, respectively

24 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

2D-Jacobi Stencil

Node 1 (Bottom)

Node 0 (Top)

Halo
Exchange

▪ Elements arranged on a grid and divided in 2
dimensions across all nodes

▪ Next element value dependent on immediate
neighbor elements

▪ Elements on “halo” region must be exchanged
with immediate neighbors

▪ Repeat compute and exchange until convergence

0

0.5

1

1.5

2

2.5

3

 1K*1K 2K*2K 4K*4K

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

Problem Input Size (Elements)

Inter-K (Comp) Inter-K (K.L.O) Inter-K (Comm) IKN GIO

▪ Strong Scaling with Time Breakdown

▸GIO outperforms both Inter-K and IKN versions for all
input sizes

▸Compared to Inter-K, GIO demonstrates 57%, 40%
and 18% performance uplift

▸The GIO runtime has a negligible overhead in GPU
compute time as it exhibits similar performance to
the Inter-K computation phase

25 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

2D-Jacobi Stencil

0

0.5

1

1.5

2

2.5

3

3.5

 #1 #2 #3 #4

R
el

at
iv

e
E

x
ec

u
ti

o
n
 T

im
e

to
 I

n
te

r-
K

Number of GPU Nodes

CPU (Comp) CPU (Comm) Inter-K (Comp) Inter-K (K.L.O)

Inter-K (Comm) Inter-K-Overlap GIO

▪ Weak Scaling with time breakdown

▸Normalized to Inter-K baseline

▸CPU performs poorly (means application is good for
GPU)

▸GIO overlaps communication and Kernel Launch
Overhead (K.L.O)

0.5

0.7

0.9

1.1

1.3

1.5

#1 #2 #3 #4

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of GPU Nodes

Inter-K Inter-K-Overlap IKN GIO

▪ Weak Scaling

▸2K *2K (element) problem size per GPU

▸Flat line is perfect scaling

▸GIO scales near-optimally

26 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

Challenges with Today’s GPU Networks

▪ Control plane is unoptimized!

▸Focused on a host-centric model where only the CPU can coordinate network transfers

▸Very high latencies to perform networking from the GPU

Initiator Target

CPU

CacheMemory

NIC Memory

Network

IOC
CPU

Cache Memory

NICMemory

GPUIOC
GPU

Memory Memory

27 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

L2 Cache Impact on Performance

▪ L2 Cache must be disabled for network-accessible GPU memory

▸Else data can get stuck

▪ Disabling the L2 cache can have adverse affects on compute that is performed in-place on
network data

▪ Up to 9.3% overhead on SPtS single GPU when disabling the cache

▪ Recommendation: Provide shader-visible L2 cache maintenance operations

WikiTalk ASIC_320ks nlpkkt160 road_usa road_central

L2 OFF (ms) 88.03 24.94 419.9 1078.9 557.7

L2 On (ms) 87.14 23.56 380.7 1003.2 541.4

Overhead (%) 1 5.5 9.3 7 2.9

28 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

GIO System Software Interactions

NIC Driver PPB_MAP GPU Driver

insmod gpu_driver

ppb_reg =

map_ppb_reg(gpu_id);

Register PPB_MAP as

CALLBACK

Return VA

Map to GPU VM

Ibv_reg_mr(ppb_reg);

Request PPB registers for

each GPU

Request the PA

Update NIC’s

Page Table

with VA->PA

translation

Kernel Space User Space

Request PPB Mapping

Per GPU

VA->PA

mapping

gio_init()

29 PPOPP 2020 | GPU INITIATED OPENSHMEM: CORRECT AND EFFICIENT INTRA-KERNEL NETWORKING FOR DGPUS | FEBRUARY 26TH, 2020

1 Slide GPU Tutorial

▪ Single Instruction-Multiple Thread (SIMT) Style

▸Bundles of threads execute in lockstep (single Program Counter)

▸Groups of thread bundles on the same CU can share scratchpad
memory and synchronize

▸Want to minimize memory and control flow divergence

▪ Common Terms
▸ Work-item = Thread

▸ Wavefront (64 Threads) = Warp (32 Threads)

▸ Unit of thread dispatch

▸ Work-group = Thread Block

▸ Unit of synchronization and data sharing

▸ Local Data Share (LDS) = Shared Memory

▸ Work-group scratchpad

Local Data Share

L2 Cache

GPU Memory (HBM)

Compute Unit

L1 Cache

SIMD SIMD SIMD SIMD

Unordered DF

▸ Private Memory = Local Memory

▸ Thread local storage

▸ Compute Unit (CU) = Streaming Multi-Processor (SM)

▸ Collection of SIMD engines sharing LDS and L1 cache

