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GPUS EVERYWHERE!

 GPUs are everywhere in modern HPC

 Over 70 of the Top 500 supercomputers use 
accelerators[1]

 100’s of applications designed to leverage GPU 
compute[2]

 High performance and energy efficiency for many 
data-parallel applications

 All-in-one solutions with both GPUs and NICs
‒ Example: AMD’s Project 47

‒ 80 Radeon Instinct GPUs

‒ 20 Mellanox 100G NICs

‒ 20 EPYC 7601 32-Core CPUs

INTRODUCTION

[1] TOP500.org, “Highlights – June 2017,” http://www.top500.org/lists/2017/06/highlights, 2017.
[2] Nvidia, “GPU-Accelerated Applications,” http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf, 2016.

http://www.top500.org/lists/2017/06/highlights
http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf
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CHALLENGES IN GPU-NETWORKING

What is the current state-of-the-art in GPU 
Networking?

Where are we going?

What are the challenges?

Let’s break this down into two parts:
‒Data Path

‒ i.e., where the data that goes across the network flows

‒Control Path
‒ i.e., who tells the NIC to move the data across the 

network

INTRODUCTION
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DATA PATH OPTIMIZATIONS

 Network data path is highly optimized

 Direct path from discrete GPU memory to NIC

‒No bounce buffers/host memory copies

‒ Implemented in Mellanox’s PeerDirect interface for their HCA

‒Used by AMD’s ROCn RDMA[3] and Nvidia’s GPUDirect RDMA[4]

INTRODUCTION

Initiator Target
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[3] AMD. 2017. ROCn RDMA. https://github.com/RadeonOpenCompute/ROCnRDMA
[4] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. http://www.mellanox.com/page/products_dyn?product_family=116

IOC = IO Controller
RDMA = Remote Direct Memory Access
NIC = Network Interface Controller
HCA = Host Channel Adaptor (same as NIC)

https://github.com/RadeonOpenCompute/ROCnRDMA
http://www.mellanox.com/page/products_dyn?product_family=116
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CONTROL PATH OPTIMIZATIONS
INTRODUCTION

 GDS removes the CPU from the critical path and avoids control flow switches

 Still restricted to kernel boundary…… but….. Is that really an overhead?

a_kernel<<<…, stream>>>(buf);

gds_stream_queue_send(stream, qp, buf);

gds_stream_wait_cq(stream, txcq);

b_kernel<<…, stream>>(buf);

cudaStreamSynchronize(stream);

GPU CPU HCA

GPU Direct Async (GDS)[5]

1. CPU schedules kernel, network operation, and, final kernel
2. GPU triggers initiation of a network operation after kernel
3. GPU launches final kernel

1 2

3

a_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

ibv_post_send(buf);

while (!done) ibv_poll_cq(txcq);

b_kernel<<<…, stream>>>(buf);

cudaStreamSynchronize(stream);

Host Driven Networking (HDN)

1. CPU schedules kernel and waits for completion
2. CPU posts network operation and waits for completion
3. CPU schedules  and waits on final kernel

GPU CPU HCA

1

2

3

[5] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Offloading communication control logic in GPU accelerated 
applications. In Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid). DOI:https://doi.org/10.1109/CCGRID.2017.
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OVERHEAD OF KERNEL BOUNDARY COMMUNICATION

Launch latencies much higher 
than HPC network overheads!
‒Can be up to 20µs for a kernel launch!

‒Compare that to the 1-2µs it takes to 
get to another node over the network

Obvious Solution: Can you do 
networking from within a kernel?
‒Absolutely!

‒Two main schools of thought here…

INTRODUCTION
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GPU HOST NETWORKING[6,7,8]

 Run your networking stack on the CPU

 Have the GPU place network requests in a 
producer/consumer queue for the CPU

 Use threads on the CPU to process messages 
and synchronize with system atomics

 Pros

‒ Lots of flexibility on the CPU to improve performance 
through coalescing, etc.

 Cons

‒ Additional latency imposed by the indirection

‒ Scales poorly with more and more GPUs

INTRODUCTION Kernel Boundary Networking

GPU

WaitLaunchSendWaitLaunch

Host-Driven Networking Put
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Done

Kernel Kernel

Intra-Kernel Networking
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Done

Send

[6] Jeff A. Stuart and John D. Owens. 2009. Message passing on data-parallel architectures. In Intl. Symp. on Parallel Distributed Processing (IPDPS). 1–12. 
[7] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir Wated, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU 
Programs. In USENIX Conf. on Operating Systems Design and Implementation (OSDI). 201–216. 
[8] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: Hardware Supported Overlap of Computation and Communication. In Intl. Conf. for High 
Performance Computing, Networking, Storage and Analysis (SC) (SC ’16). Article 52, 12 pages.
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GPU NATIVE NETWORKING[9,10,11,12]

 Run a networking stack on the GPU

 Allow the GPU work-items themselves to 
directly interact with the network adaptor

 Pros

‒ Completely decoupled from the CPU

‒ Can be performant/low-latency

 Cons

‒ Hard to talk to network interface designed for CPUs

‒ Can suffer from significant divergence and register 
pressure

INTRODUCTION

Is there another option?

Launch

Kernel 

GPU Native Networking Put

CPU

GPU
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[9] Lena Oden, Holger Froning, and Franz-Joseph Pfreundt. 2014. Infiniband-Verbs on GPU: A Case Study of Controlling an Infiniband Network Device from 
the GPU. In Intl. Conf. on Parallel Distributed Processing Symposium Workshops (IPDPSW). 976–983. 
[10] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing Put/Get APIs for Thread-Collaborative Processors. In Intl. Conf. on Parallel Processing 
(ICPP) Workshops. 
[11] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing communication models for distributed thread-collaborative processors in terms of 
energy and time. In Intl. Symp. on Performance Analysis of Systems and Software (ISPASS).
[12] Feras Daoud, Amir Watad, and Mark Silberstein. 2016. GPUrdma: GPU-side Library for High Performance Networking from GPU Kernels. In Intl. 
Workshop on Runtime and Operating Systems for Supercomputers (ROSS). 6:1–6:8. 
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INTRODUCING GPU TRIGGERED NETWORKING
GPU-TN ARCHITECTURE

 GPU Triggered Networking (GPU-TN)
‒ Control path optimization

‒ CPU prepares network operations and 
registers them with the GPU

‒ GPU triggers the operation from within a 
kernel

‒ Inspired by triggered operations from the 
Portals 4 networking API

 Similar concept to GDS with a few key 
differences:
‒ Can be triggered from inside the GPU at 

different granularities

‒ Complexity managed inside the NIC itself
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OVERVIEW
GPU-TN ARCHITECTURE

Steps in a GPU-TN operation:
1. Register the network operation with 

the NIC using code on the CPU

2. GPU populates the network buffer with 
data it wants to send to another node

3. GPU triggers the operation from within 
a kernel

‒ GPU-TN supports several different 
granularities

‒ More details to follow here

4. NIC performs the requested network 
operation (Put, Get, etc.)

...

// Initialize RDMA comm layer

int rank = RdmaInit();

void * buf = malloc(BUFFER_SIZE);

//Register operations with the NIC

for (int i = 0; i < N_MSGS; i++)

TrigPut(TAG + i, buf, target, thresh,

...);

//Request trigger address from NIC

char *trigAddr = GetTriggerAddr();

//Launch GPU Kernel

LaunchKern(trigAddr, TAG, N_MSGS, buf, ...);

// Cleanup, do more compute, etc.

...

GPUCPU

NIC

Send Buffer

2

Network
4

Trigger List
Trigger 
Entry

Trigger 
Entry

……

1 3



| GPU TRIGGERED NETWORKING FOR INTRA-KERNEL COMMUNICATIONS |   NOVEMBER 15, 201711

PROGRAMMING INTERFACE

Work-item
A thread on the GPU

Work-group
A collection of threads on the GPU

Kernel
All threads in a GPU program

__kernel

void kern1(__global char *trigAddr,

const int tagBase,

__global void *buffer)

{

// do work

...

buffer = ...;

atomic_work_item_fence(...);

int id = get_global_id(...);

atomic_store_explicit(trigAddr,

tagBase + id,

...);

// do additional work

...

}

__kernel

void kern2(__global char *trigAddr,

const int tagBase,

__global void *buffer)

{

// do work

...

buffer = ...;

work_group_barrier(...);

if (!get_local_id(...)) {

int id = get_group_id(...);

atomic_store_explicit(trigAddr,

tagBase + id,

...);

}

// do additional work 

...

}

__kernel

void kern3(__global char *trigAddr,

const int tag,

__global void *buffer)

{

// do work

...

buffer = ...;

work_group_barrier(...);

if (!get_local_id(...)) {

atomic_store_explicit(trigAddr,

tag,

...);

}

// do additional work

...

}

GPU-TN ARCHITECTURE

 Challenges/ Caveats
‒ GPU’s relaxed memory consistency model

‒ GPU’s lack of forward progress guarantees

 Take away messages
‒ Can be triggered at different granularities

‒ Triggers with multiple granularities combined on the NIC
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HARDWARE COMPLEXITY

Steps on the NIC side
1. GPU writes tag

2. Tag matched to trigger entries

3. On tag match, increment counter

4. When counter >= threshold, perform the 
network operation

Logic implementable in software or 
using hardware similar to the figure

Synchronization/aggregation among 
messages done on the NIC

GPU-TN ARCHITECTURE

Network
Operation
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SIMULATION ENVIRONMENT

All data collected in gem5[13]

‒AMD GPU model[14]

‒Cache-coherent, APU system architecture

‒No dedicated GPU memory

‒Static launch latency model calibrated from most 
optimistic real system data

Portals 4-based NIC model[15]

‒Low-level RDMA network programming API

‒Currently supported by:
‒ MPICH, Open MPI, GASNet, Berkeley UPC, and others

RESULTS

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, 
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, pp. 1–7, 2011.
[14] AMD. (2015) The AMD gem5 APU simulator: Modeling heterogeneous systems in gem5. http://gem5.org/GPU_Models.
[15] Sandia National Laboratories, “The Portals 4.0.2 network programming interface,” http://www.cs.sandia.gov/Portals/portals402.pdf, 2014.

CPU and Memory Configuration

CPU Type 8-wide OOO, 4Ghz, 8 cores

I,D-Cache 64K, 2-way, 2 cycles

L2-Cache 2MB, 8-way, 4 cycles

L3-Cache 16MB, 16-way, 20 cycles

DRAM DDR4, 8 Channels, 2133MHz

GPU Configuration

GPU Type 1 Ghz, 24 Compute Units

D-Cache 16kB, 64B line, 16-way, 25 cycles

I-Cache 32kB, 64B line, 8-way, 25 cycles

L2-Cache 768kB, 64B line, 16-way, 150 cycles

Kernel Latency 1.5µs launch / 1.5µs teardown

NIC Configuration

Link Speed 100ns Link, 100ns Switch

Bandwidth 100 Gbps

Topology Star (single switch)

http://gem5.org/GPU_Models
http://www.cs.sandia.gov/Portals/portals402.pdf
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SYSTEMS UNDER TEST

 CPU
‒ No GPU, just for sanity check

 HDN (Host driven networking)
‒ Kernel boundary, GPU<->CPU<->NIC control path

 GDS-Sim (GPUDirect Async Simulation)
‒ Kernel boundary, GPU<->NIC control path

‒ Simulator implementation…not necessarily 
representative of real GDS numbers!

 GPU-TN (GPU Triggered Networking)
‒ Our scheme

RESULTS

WaitLaunchSendWaitLaunch

Host-Driven Networking Put

CPU

GPU

NIC

Done

Kernel Kernel

Send Launch

GPUDirect Async Simulation (GDS-Sim) Put

CPU

GPU

NIC

Done

Kernel Kernel

ComputeSendCompute

CPU Put

CPU

GPU

NIC

Done



| GPU TRIGGERED NETWORKING FOR INTRA-KERNEL COMMUNICATIONS |   NOVEMBER 15, 201715

GPU-TN LATENCY

 One-sided put latency benchmark
‒ Initiator launches dummy kernel, executes network command, and terminates

‒ Target polls on put location

 Take-away messages
‒ HDN < GDS-Sim < GPU-TN

‒ GPU-TN actually overlaps kernel teardown with network transfer!

RESULTS
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STENCIL

 2D Jacobi stencil example

‒Computation blocks on communication

‒Communication is a simple halo exchange

 Take-away messages
‒For very small stencils

‒GPU is useless

‒For very large stencils
‒All GPU network strategies are similar

‒control path optimizations do not matter

‒For medium size stencils
‒CPU <<< HDS < GDS-Sim < GPU-TN
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MACHINE LEARNING (ML) TRAINING

 Main communication step in ML training is AllReduce

 AllReduce microbenchmark

‒ For a small number of nodes 

‒ all For a big numGPUs have similar speedup

‒ For a large number of nodes

‒ little benefit using GPUs

‒ Sweet spot is, once again, in the middle

 ML training acceleration

‒ Benchmarks from the Microsoft Cognitive Toolkit 
(CNTK)[16]

‒ Results are projected using real runs augmented with 
Allreduce() speed-up numbers from the simulator

‒ Almost nothing in CIFAR to 5-10% in AN4 LSTM

‒ Speed-ups vary depending on communication to 
computation ratio for each workload

RESULTS
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[16] Agarwal, et.al., “An introduction to computational networks and the Computational Network Toolkit,” Microsoft, Technical Report, 2014.
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SUMMARY
CONCLUSION

 Intra-kernel networking avoids costly overheads 
present in kernel boundary networking 
implementations

 GPU-TN combines intra-kernel networking with 
message preregistration by the CPU

 Multiple granularities of messages are supported 
using a small amount of hardware on the NIC

 Offers up to ~35% improvement over HDN and up 
to ~25% improvement vs GDS enabled solutions
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THANK YOU!

Michael.Lebeane@amd.com

mlebeane@utexas.edu

QUESTIONS?

mailto:Michael.Lebeane@amd.com
mailto:mlebeane@utexas.edu
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DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS 
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to 
revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, 
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO 
ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN 
IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2017 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the 
United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The work described in this presentation was made with Government support awarded by the DOE. The Government may have certain rights in this work.
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MOTIVATING EXAMPLE: MACHINE LEARNING

 Networks of accelerators are especially important for machine learning

 Almost frameworks and machines support multi-GPU, multi-node learning solutions

 Combine results through Allreduce() operation:
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